基于深度学习的花卉识别系统

简介:

基于Python的花卉识别分类系统利用深度学习和计算机视觉技术,能够准确识别和分类各种花卉,如玫瑰、郁金香和向日葵等。这种系统不仅有助于植物学研究和园艺管理,还在生态保护、智能农业和市场销售等领域展现广泛应用前景。随着技术的不断进步和数据集的增加,这类系统有望成为未来智能化花卉识别的核心工具,为社会提供更便捷、精准的服务。

界面展示:

系统介绍:

系统基于深度学习网络 Swin Transformer,使用的主要编程语言是 Python,并依赖于 Torch(版本需求>=1.8)、OpenCV 和 PyQt5 等库。项目包含以下几个关键组成部分:

  1. 深度学习网络: 使用了 Swin Transformer 网络,这是一种在计算机视觉领域表现优异的深度学习模型,特别适合处理图像分类和对象识别任务。

  2. 运行环境: 要求配置 Python 版本为3.6,并安装 Torch 版本不低于 1.8、OpenCV 和 PyQt5 等库。这些库和工具支持项目中的数据处理、模型训练和图形用户界面的开发。

  3. 文件内容: 包含训练和预测的全部源代码,预训练好的模型文件,以及一个包含五类共 3500 张图像的数据集。这些数据集涵盖了五种常见花卉的多样性和变化,用于训练和测试系统的准确性和泛化能力。

  4. 功能描述: 系统能够对这五种花卉进行检测和识别,用户只需按照要求配置好运行环境,即可利用系统进行花卉的自动识别和分类。这种功能不仅可以用于学术研究和教育领域,还能在实际应用中提升生产效率和服务质量。

项目获取(项目完整文件下载请见参考视频的简介处给出 :➷➷➷

系统展示视频: 基于深度学习的花卉检测识别系统_哔哩哔哩_bilibili

相关推荐
腾讯WeTest16 分钟前
Al in CrashSight ——基于AI优化异常堆栈分类模型
人工智能·分类·数据挖掘
凯子坚持 c33 分钟前
openGauss向量数据库技术演进与AI应用生态全景
数据库·人工智能
嵌入式-老费34 分钟前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
温柔哥`1 小时前
HiProbe-VAD:通过在免微调多模态大语言模型中探测隐状态实现视频异常检测
人工智能·语言模型·音视频
强化学习与机器人控制仿真1 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
机器之心2 小时前
如视发布空间大模型Argus1.0,支持全景图等多元输入,行业首创!
人工智能·openai
Elastic 中国社区官方博客2 小时前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信
Baihai_IDP2 小时前
分享一名海外独立开发者的 AI 编程工作流
人工智能·llm·ai编程
油炸小波2 小时前
02-AI应用开发平台Dify
人工智能·python·dify·coze
机器之心2 小时前
Gemini 3深夜来袭:力压GPT 5.1,大模型谷歌时代来了
人工智能·openai