计算机视觉基础

SOTA

SOTA,是++State Of The Art++ 的缩写。

SOTA model:++state-of-the-art model++ ,指在该项研究任务中,目前最好或最先进的模型,并不是特指某个具体的模型。

SOTA result:++state-of-the-art result++,指在该项研究任务中,目前最好模型的结果或性能或表现。

FPS

FPS,是 ++Frames Per Second++的缩写。

更高的帧率并不意味着更高的视频质量。但是,使用高帧率的摄像机可以获得更流畅的视频。

60 FPS的帧数是 30 FPS素材的两倍。相比30 FPS,以 60 FPS 的速度拍摄可以更加流畅和清晰。每秒 60 帧可以显示复杂的细节,适用于慢动作视频,而每秒 30 帧则适合电视节目、新闻和体育节目。

SSIM

SSIM,是 ++structural similarity index++的缩写。

结构相似性指数 (SSIM)是一种用于量化两幅图像间的结构相似性的指标。与L2损失函数不同,SSIM仿照人类的视觉系统(Human Visual System,HVS)实现了结构相似性的有关理论,对图像的局部结构变化的感知敏感。SSIM从亮度、对比度以及结构量化图像的属性,用均值估计亮度,方差估计对比度,协方差估计结构相似程度。SSIM值的范围为0至1,越大代表图像越相似。如果两张图片完全一样时,SSIM值为1。

PSNR

PSNR,是 ++Peak Signal to Noise Ratio++的缩写。

峰值信噪比 (PSNR)是一种评价图像质量的度量标准。PSNR具有局限性,只是衡量最大值信号和背景噪音之间的图像质量参考值。PSNR单位为dB,其值越大,图像失真越少。

PSNR高于40dB,说明图像质量几乎与原图一样好。

在30至40dB间,说明图像质量的失真损失在可接受范围内。

在20至30dB间,说明图像质量比较差。

PSNR低于20dB,说明图像失真严重。

LPIPS

LPIPS,是 ++Learned Perceptual Image Patch Similarity++的缩写。

学习感知图像块相似度 (LPIPS)也称为"感知损失"(perceptual loss),用于度量两张图像之间的差别。该度量标准学习生成图像到Ground Truth的反向映射强制生成器学习从假图像中重构真实图像的反向映射,并优先处理它们之间的感知相似度。LPIPS 比传统方法(比如:L2/PSNR, SSIM, FSIM)更符合人类的感知情况。LPIPS的值越低表示两张图像越相似,反之,则差异越大。

相关推荐
研梦非凡2 小时前
CVPR 2025|基于视觉语言模型的零样本3D视觉定位
人工智能·深度学习·计算机视觉·3d·ai·语言模型·自然语言处理
Monkey的自我迭代2 小时前
多目标轮廓匹配
人工智能·opencv·计算机视觉
索迪迈科技4 小时前
安防芯片 ISP 的白平衡统计数据对图像质量有哪些影响?
人工智能·计算机视觉·白平衡
ViperL14 小时前
[优化算法]神经网络结构搜索(一)
深度学习·神经网络·计算机视觉
张子夜 iiii6 小时前
实战项目-----在图片 hua.png 中,用红色画出花的外部轮廓,用绿色画出其简化轮廓(ε=周长×0.005),并在同一窗口显示
人工智能·pytorch·python·opencv·计算机视觉
nenchoumi31198 小时前
全网首发!Realsense 全新 D555 相机开箱记录与 D435i、L515、D456 横向测评!
数码相机·计算机视觉·机器人·ros·realsense
小关会打代码9 小时前
计算机视觉之多模板匹配
人工智能·计算机视觉
AI 嗯啦9 小时前
计算机视觉----opencv----身份证号码识别案例
人工智能·opencv·计算机视觉
星期天要睡觉9 小时前
计算机视觉(opencv)——基于模板匹配的信用卡号识别系统
opencv·计算机视觉
荼蘼11 小时前
OpenCV 高阶 图像金字塔 用法解析及案例实现
人工智能·opencv·计算机视觉