使用 Helsinki-NLP 中英文翻译本地部署 - python 实现

通过 Helsinki-NLP 本地部署中英文翻译功能。该开源模型性价比相对高,资源占用少,对于翻译要求不高的应用场景可以使用,比如单词,简单句式的中英文翻译。

该示例使用的模型下载地址:【免费】Helsinki-NLP中英文翻译本地部署-python实现模型资源-CSDN文库

模型也可以在hugging face 下载。

1、英文翻译为中文示例:

python 复制代码
# -*- coding: utf-8 -*-
# date:2024
# Author: DataBall
# function:英文翻译为中文
import os
import cv2
os.environ['CUDA_VISIBLE_DEVICES'] = "0"

from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer

# 英文翻译成中文
model = AutoModelWithLMHead.from_pretrained("Helsinki-NLP/opus-mt-en-zh",cache_dir = "./ckpt-fy",local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh",cache_dir = "./ckpt-fy",local_files_only=True)
translation = pipeline("translation_en_to_zh", model=model, tokenizer=tokenizer)

text = "Because of dreams, I will work hard."
translated_text = translation(text, max_length=256)[0]['translation_text']

print(" 原英文  : {}".format(text))
print(" 翻译中文: {}".format(translated_text))

对应的英文转中文log如下:

python 复制代码
原英文  : Because of dreams, I will work hard.
翻译中文: 因为梦想,我会努力工作

2、中文翻译为英文示例:

python 复制代码
# -*- coding: utf-8 -*-
# date:2024
# Author: DataBall
# function:中文翻译为英文
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en",cache_dir = "./ckpt-fy",local_files_only=True)
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en",cache_dir = "./ckpt-fy",local_files_only=True)
translation = pipeline("translation_zh_to_en", model=model, tokenizer=tokenizer)
text = "因为梦想,我会努力工作。"
translated_text = translation(text, max_length=256)[0]['translation_text']

print(" 原中文  : {}".format(text))
print(" 翻译英文: {}".format(translated_text))

对应的中文转英文log如下:

python 复制代码
原中文  : 因为梦想,我会努力工作。
翻译英文: Because of my dreams, I'll work hard.

助力快速掌握数据集的信息和使用方式。

相关推荐
神州问学2 分钟前
【AI洞察】别再只想着“让AI听你话”,人类也需要学习“适应AI”!
人工智能
DevUI团队22 分钟前
🚀 MateChat V1.8.0 震撼发布!对话卡片可视化升级,对话体验全面进化~
前端·vue.js·人工智能
聚客AI25 分钟前
🎉7.6倍训练加速与24倍吞吐提升:两项核心技术背后的大模型推理优化全景图
人工智能·llm·掘金·日新计划
黎燃35 分钟前
当 YOLO 遇见编剧:用自然语言生成技术把“目标检测”写成“目标剧情”
人工智能
算家计算36 分钟前
AI教母李飞飞团队发布最新空间智能模型!一张图生成无限3D世界,元宇宙越来越近了
人工智能·资讯
掘金一周39 分钟前
Flutter Riverpod 3.0 发布,大规模重构下的全新状态管理框架 | 掘金一周 9.18
前端·人工智能·后端
用户5191495848451 小时前
C#记录类型与集合的深度解析:从默认实现到自定义比较器
人工智能·aigc
IT_陈寒4 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
数据智能老司机5 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
逛逛GitHub5 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品