使用 Helsinki-NLP 中英文翻译本地部署 - python 实现

通过 Helsinki-NLP 本地部署中英文翻译功能。该开源模型性价比相对高,资源占用少,对于翻译要求不高的应用场景可以使用,比如单词,简单句式的中英文翻译。

该示例使用的模型下载地址:【免费】Helsinki-NLP中英文翻译本地部署-python实现模型资源-CSDN文库

模型也可以在hugging face 下载。

1、英文翻译为中文示例:

python 复制代码
# -*- coding: utf-8 -*-
# date:2024
# Author: DataBall
# function:英文翻译为中文
import os
import cv2
os.environ['CUDA_VISIBLE_DEVICES'] = "0"

from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer

# 英文翻译成中文
model = AutoModelWithLMHead.from_pretrained("Helsinki-NLP/opus-mt-en-zh",cache_dir = "./ckpt-fy",local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh",cache_dir = "./ckpt-fy",local_files_only=True)
translation = pipeline("translation_en_to_zh", model=model, tokenizer=tokenizer)

text = "Because of dreams, I will work hard."
translated_text = translation(text, max_length=256)[0]['translation_text']

print(" 原英文  : {}".format(text))
print(" 翻译中文: {}".format(translated_text))

对应的英文转中文log如下:

python 复制代码
原英文  : Because of dreams, I will work hard.
翻译中文: 因为梦想,我会努力工作

2、中文翻译为英文示例:

python 复制代码
# -*- coding: utf-8 -*-
# date:2024
# Author: DataBall
# function:中文翻译为英文
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en",cache_dir = "./ckpt-fy",local_files_only=True)
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en",cache_dir = "./ckpt-fy",local_files_only=True)
translation = pipeline("translation_zh_to_en", model=model, tokenizer=tokenizer)
text = "因为梦想,我会努力工作。"
translated_text = translation(text, max_length=256)[0]['translation_text']

print(" 原中文  : {}".format(text))
print(" 翻译英文: {}".format(translated_text))

对应的中文转英文log如下:

python 复制代码
原中文  : 因为梦想,我会努力工作。
翻译英文: Because of my dreams, I'll work hard.

助力快速掌握数据集的信息和使用方式。

相关推荐
八零后琐话4 小时前
干货:程序员必备性能分析工具——Arthas火焰图
开发语言·python
23遇见4 小时前
基于 CANN 框架的 AI 加速:ops-nn 仓库的关键技术解读
人工智能
Codebee5 小时前
OoderAgent 企业版 2.0 发布的意义:一次生态战略的全面升级
人工智能
光泽雨5 小时前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
Σίσυφος19005 小时前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…5 小时前
机器学习的商业化变现
人工智能·机器学习
青春不朽5125 小时前
Scrapy框架入门指南
python·scrapy
sali-tec5 小时前
C# 基于OpenCv的视觉工作流-章22-Harris角点
图像处理·人工智能·opencv·算法·计算机视觉
2的n次方_6 小时前
ops-math 极限精度优化:INT8/INT4 基础运算的底层指令集映射与核函数复用
人工智能