使用 Helsinki-NLP 中英文翻译本地部署 - python 实现

通过 Helsinki-NLP 本地部署中英文翻译功能。该开源模型性价比相对高,资源占用少,对于翻译要求不高的应用场景可以使用,比如单词,简单句式的中英文翻译。

该示例使用的模型下载地址:【免费】Helsinki-NLP中英文翻译本地部署-python实现模型资源-CSDN文库

模型也可以在hugging face 下载。

1、英文翻译为中文示例:

python 复制代码
# -*- coding: utf-8 -*-
# date:2024
# Author: DataBall
# function:英文翻译为中文
import os
import cv2
os.environ['CUDA_VISIBLE_DEVICES'] = "0"

from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer

# 英文翻译成中文
model = AutoModelWithLMHead.from_pretrained("Helsinki-NLP/opus-mt-en-zh",cache_dir = "./ckpt-fy",local_files_only=True)
tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh",cache_dir = "./ckpt-fy",local_files_only=True)
translation = pipeline("translation_en_to_zh", model=model, tokenizer=tokenizer)

text = "Because of dreams, I will work hard."
translated_text = translation(text, max_length=256)[0]['translation_text']

print(" 原英文  : {}".format(text))
print(" 翻译中文: {}".format(translated_text))

对应的英文转中文log如下:

python 复制代码
原英文  : Because of dreams, I will work hard.
翻译中文: 因为梦想,我会努力工作

2、中文翻译为英文示例:

python 复制代码
# -*- coding: utf-8 -*-
# date:2024
# Author: DataBall
# function:中文翻译为英文
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline, AutoModelWithLMHead, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en",cache_dir = "./ckpt-fy",local_files_only=True)
model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en",cache_dir = "./ckpt-fy",local_files_only=True)
translation = pipeline("translation_zh_to_en", model=model, tokenizer=tokenizer)
text = "因为梦想,我会努力工作。"
translated_text = translation(text, max_length=256)[0]['translation_text']

print(" 原中文  : {}".format(text))
print(" 翻译英文: {}".format(translated_text))

对应的中文转英文log如下:

python 复制代码
原中文  : 因为梦想,我会努力工作。
翻译英文: Because of my dreams, I'll work hard.

助力快速掌握数据集的信息和使用方式。

相关推荐
菜只因C12 分钟前
深度学习:从技术本质到未来图景的全面解析
人工智能·深度学习
工业机器视觉设计和实现17 分钟前
lenet改vgg训练cifar10突破71分
人工智能·机器学习
咚咚王者18 分钟前
人工智能之数据分析 Matplotlib:第四章 图形类型
人工智能·数据分析·matplotlib
TTGGGFF39 分钟前
人工智能:用Gemini 3一键生成3D粒子电子手部映射应用
人工智能·3d·交互
LitchiCheng1 小时前
Mujoco 基础:获取模型中所有 body 的 name, id 以及位姿
人工智能·python
Allen_LVyingbo1 小时前
面向医学影像检测的深度学习模型参数分析与优化策略研究
人工智能·深度学习
CareyWYR1 小时前
每周AI论文速递(251124-251128)
人工智能
却道天凉_好个秋1 小时前
OpenCV(三十三):什么是轮廓?
人工智能·opencv·计算机视觉
xieyan08111 小时前
选股中的财务指标运用_ROE_PE_PB...
大数据·人工智能
海伯森技术1 小时前
赋予人形机器人“细腻触觉”:海伯森六维力传感器的材质与集成改革
人工智能·机器人·材质