1 机器学习之引言

傍晚小街路面上沁出微雨后的湿润,和煦的细风吹来,抬头看看天边的晚霞,嗯,明天又是一个好天气。走到水果摊旁,挑了个根蒂蜷缩、敲起来声音浊响的青绿西瓜,一边满心期待着皮薄肉厚瓤甜的爽落感,一边愉快地想着,这学期狠下了工夫,基础概念弄得清清楚楚,算法作业也是信手拈来,这门课成绩一定差不了!

希望各位在学期结束时有这样的感觉。作为开场,我们先大致了解一下什么是"机器学习"(machine learning)。

回头看第一段话,我们会发现这里涉及很多基于经验做出的预判。例如,为什么看到微湿路面、感到和风、看到晚霞,就认为明天是好天呢?这是因为在我们的生活经验中已经遇见过很多类似情况,头一天观察到上述特征后,第二天天气通常会很好。为什么色泽青绿、根蒂蜷缩、敲声浊响,就能判断出是正熟的好瓜?因为我们吃过、看过很多西瓜,所以基于色泽、根蒂、敲声这几个特征我们就可以做出相当好的判断。类似的,我们从以往的学习经验知道,下足了工夫、弄清了概念、做好了作业,自然会取得好成绩。可以看出,我们能做出有效的预判,是因为我们已经积累了许多经验,而通过对经验的利用,就能对新情况做出有效的决策。

上面对经验的利用是靠我们人类自身完成的。计算机能帮忙吗?

Mitchell,1997\]给出了一个更形式化的定义:假设用来评估计算机程序在某任务类上的性能,若一个程序通过利用经验在中任务上获得了性能改善,则我们就说关于和,该程序对进行了学习。 机器学习正是这样一门学科,它致力于研究如何通过计算的手段,利用经验来改善系统自身的性能,在计算机系统中,​"经验"通常以"数据"形式存在,因此,机器学习所研究的主要内容,是关于在计算机上从数据中产生"模型"(model)的算法,即"学习算法"(learning algorithm)。有了学习算法,我们把经验数据提供给它,它就能基于这些数据产生模型;在面对新的情况时(例如看到一个没剖开的西瓜)​,模型会给我们提供相应的判断(例如好瓜)​。如果说计算机科学是研究关于"算法"的学问,那么类似的,可以说机器学习是研究关于"学习算法"的学问。 例如\[Hand et al.,2001\].本书用"模型"泛指从数据中学得的结果。有文献用"模型"指全局性结果(例如一棵决策树)​,而用"模式"指局部性结果(例如一条规则)​。

相关推荐
DeepSeek-大模型系统教程10 分钟前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝17 分钟前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
IT古董18 分钟前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
小雷FansUnion2 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周2 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享3 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜3 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿3 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_4 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1234 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪