YOLO11改进|注意力机制篇|引入线性注意力机制FLAttention

目录

一、【FLA】注意力机制

1.1【FLA】注意力介绍

下图是【FLA】的结构图,让我们简单分析一下运行过程和优势,以及和Softmax Attention的对比

  1. Softmax Attention(左侧)
  • 处理流程:
  • 输入矩阵:查询矩阵 𝑄的大小为 𝑁×𝑑,键矩阵 𝐾𝑇的大小为 𝑑×𝑁,值矩阵 𝑉 的大小为 𝑁×𝑑,其中 𝑁是序列长度,𝑑是特征维度。
  • 计算注意力分数:通过矩阵乘法 𝑄𝐾𝑇,得到一个大小为 𝑁×𝑁的注意力权重矩阵。
  • Softmax 归一化:通过 Softmax 函数对注意力权重进行归一化。
    应用到值矩阵 𝑉:然后将归一化的注意力权重乘以值矩阵 𝑉,最终输出为 𝑁×𝑑。
  • 复杂度:该计算的复杂度是 𝑂(𝑁2𝑑)。其中主要的计算代价在于矩阵 𝑄𝐾𝑇 的乘法,这个操作产生一个 𝑁×𝑁的注意力矩阵。因此,当序列长度 𝑁较大时,计算开销显著增加,尤其在长序列处理时表现较差。
  1. Linear Attention(右侧)
  • 处理流程:

  • 输入矩阵:查询矩阵 𝑄的大小为 𝑁×𝑑,键矩阵 𝐾𝑇为 𝑑×𝑁,值矩阵 𝑉为 𝑁×𝑑。先计算 𝐾𝑇𝑉:与 Softmax Attention 不同,Linear Attention 先将键矩阵 𝐾𝑇和值矩阵 𝑉相乘,得到一个大小为 𝑑×𝑑的矩阵。再计算 𝑄(𝐾𝑇𝑉):然后将查询矩阵 𝑄与该 𝑑×𝑑矩阵相乘,最终得到输出为 𝑁×𝑑。

  • 复杂度:

  • Linear Attention 的计算复杂度是 𝑂(𝑁𝑑2),相较于 Softmax Attention 的 𝑂(𝑁2𝑑),降低了一个 𝑁维度。这种结构的计算复杂度不再依赖于序列长度 𝑁,因此适合处理长序列任务。

1.2【FLA】核心代码

python 复制代码
import torch.nn as nn
import torch
from einops import rearrange
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    # Pad to 'same' shape outputs
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
 
 
class Conv(nn.Module):
    # Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        return self.act(self.conv(x))
 
 
class FocusedLinearAttention(nn.Module):
    def __init__(self, dim, num_patches=64, num_heads=8, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, sr_ratio=1,
                 focusing_factor=3.0, kernel_size=5):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
 
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
 
        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
 
        self.focusing_factor = focusing_factor
        self.dwc = nn.Conv2d(in_channels=head_dim, out_channels=head_dim, kernel_size=kernel_size,
                             groups=head_dim, padding=kernel_size // 2)
        self.scale = nn.Parameter(torch.zeros(size=(1, 1, dim)))
        # self.positional_encoding = nn.Parameter(torch.zeros(size=(1, num_patches // (sr_ratio * sr_ratio), dim)))
 
 
    def forward(self, x):
        B, C, H, W = x.shape  # 输入为四维:[批次大小, 通道数, 高度, 宽度]
        dtype, device = x.dtype, x.device
        # 调整输入以匹配原始模块的预期格式
        x = rearrange(x, 'b c h w -> b (h w) c')
        q = self.q(x)
        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, C).permute(2, 0, 1, 3)
        else:
            kv = self.kv(x).reshape(B, -1, 2, C).permute(2, 0, 1, 3)
        k, v = kv[0], kv[1]
        N = H * W  # 序列长度
        # 重新生成位置编码
        positional_encoding = nn.Parameter(torch.zeros(size=(1, N, self.dim), device=device))
        k = k + positional_encoding
        focusing_factor = self.focusing_factor
        kernel_function = nn.ReLU()
        scale = nn.Softplus()(self.scale)
        q = kernel_function(q) + 1e-6
        k = kernel_function(k) + 1e-6
        q = q / scale
        k = k / scale
        q_norm = q.norm(dim=-1, keepdim=True)
        k_norm = k.norm(dim=-1, keepdim=True)
        q = q ** focusing_factor
        k = k ** focusing_factor
        q = (q / q.norm(dim=-1, keepdim=True)) * q_norm
        k = (k / k.norm(dim=-1, keepdim=True)) * k_norm
        bool = False
        if dtype == torch.float16:
            q = q.float()
            k = k.float()
            v = v.float()
            bool = True
        q, k, v = (rearrange(x, "b n (h c) -> (b h) n c", h=self.num_heads) for x in [q, k, v])
        i, j, c, d = q.shape[-2], k.shape[-2], k.shape[-1], v.shape[-1]
        z = 1 / (torch.einsum("b i c, b c -> b i", q, k.sum(dim=1)) + 1e-6)
        if i * j * (c + d) > c * d * (i + j):
            kv = torch.einsum("b j c, b j d -> b c d", k, v)
            x = torch.einsum("b i c, b c d, b i -> b i d", q, kv, z)
        else:
            qk = torch.einsum("b i c, b j c -> b i j", q, k)
            x = torch.einsum("b i j, b j d, b i -> b i d", qk, v, z)
        if self.sr_ratio > 1:
            v = nn.functional.interpolate(v.permute(0, 2, 1), size=x.shape[1], mode='linear').permute(0, 2, 1)
        if bool:
            v = v.to(torch.float16)
            x = x.to(torch.float16)
 
        num = int(v.shape[1] ** 0.5)
        feature_map = rearrange(v, "b (w h) c -> b c w h", w=num, h=num)
        feature_map = rearrange(self.dwc(feature_map), "b c w h -> b (w h) c")
        x = x + feature_map
        x = rearrange(x, "(b h) n c -> b n (h c)", h=self.num_heads)
 
        x = self.proj(x)
        x = self.proj_drop(x)
        x = rearrange(x, 'b (h w) c -> b c h w', h=H, w=W)
        return x
 

二、添加【FLA】注意力机制

2.1STEP1

首先找到ultralytics/nn文件路径下新建一个Add-module的python文件包【这里注意一定是python文件包,新建后会自动生成_init_.py】,如果已经跟着我的教程建立过一次了可以省略此步骤 ,随后新建一个FLA.py文件并将上文中提到的注意力机制的代码全部粘贴到此文件中,如下图所示

2.2STEP2

在STEP1中新建的_init_.py文件中导入增加改进模块的代码包如下图所示

2.3STEP3

找到ultralytics/nn文件夹中的task.py文件,在其中按照下图添加

2.4STEP4

定位到ultralytics/nn文件夹中的task.py文件中的def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)函数添加如图代码,【如果不好定位可以直接ctrl+f搜索定位】

三、yaml文件与运行

3.1yaml文件

以下是添加【FLA】注意力机制在Backbone中的yaml文件,大家可以注释自行调节,效果以自己的数据集结果为准

python 复制代码
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, C3k2, [256, False, 0.25]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 2, C3k2, [512, False, 0.25]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 2, C3k2, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, C3k2, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9
  - [-1, 2, C2PSA, [1024]] # 10

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, C3k2, [512, False]] # 13

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
  - [-1,1,FocusedLinearAttention,[]]

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P4
  - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)

  - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

以上添加位置仅供参考,具体添加位置以及模块效果以自己的数据集结果为准

3.2运行成功截图

OK 以上就是添加【FLA】注意力机制的全部过程了,后续将持续更新尽情期待

相关推荐
雪兽软件1 小时前
人工智能和大数据如何改变企业?
大数据·人工智能
UMS攸信技术3 小时前
汽车电子行业数字化转型的实践与探索——以盈趣汽车电子为例
人工智能·汽车
ws2019073 小时前
聚焦汽车智能化与电动化︱AUTO TECH 2025 华南展,以展带会,已全面启动,与您相约11月广州!
大数据·人工智能·汽车
堇舟4 小时前
斯皮尔曼相关(Spearman correlation)系数
人工智能·算法·机器学习
爱写代码的小朋友4 小时前
使用 OpenCV 进行人脸检测
人工智能·opencv·计算机视觉
Cici_ovo5 小时前
摄像头点击器常见问题——摄像头视窗打开慢
人工智能·单片机·嵌入式硬件·物联网·计算机视觉·硬件工程
QQ39575332375 小时前
中阳智能交易系统:创新金融科技赋能投资新时代
人工智能·金融
yyfhq5 小时前
dcgan
深度学习·机器学习·生成对抗网络
这个男人是小帅5 小时前
【图神经网络】 AM-GCN论文精讲(全网最细致篇)
人工智能·pytorch·深度学习·神经网络·分类
放松吃羊肉6 小时前
【约束优化】一次搞定拉格朗日,对偶问题,弱对偶定理,Slater条件和KKT条件
人工智能·机器学习·支持向量机·对偶问题·约束优化·拉格朗日·kkt