图片数据增强-resize(不同插值)、各种模糊

将图片批量进行不同的数据增强处理,并保存到不同的文件夹下。

各种不同的模糊处理

python 复制代码
import os
import cv2


def apply_blur_to_images(input_folder_path, output_folder_path):
    # 遍历文件夹下的所有文件
    for filename in os.listdir(input_folder_path):
        # 检查文件类型是否为图片
        if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):
            # 构建输入图片的完整路径
            input_image_path = os.path.join(input_folder_path, filename)

            # 读取图片
            image = cv2.imread(input_image_path)

            # 根据不同的模糊方法进行处理
            for blur_method in ['gaussian', 'mean', 'median', 'bilateral']:
                # 创建对应的模糊文件夹
                output_blur_folder_path = os.path.join(output_folder_path, blur_method)
                os.makedirs(output_blur_folder_path, exist_ok=True)

                # 根据选择的模糊方法进行处理
                if blur_method == 'mean':
                    blurred_image = cv2.blur(image, (15, 15))
                elif blur_method == 'median':
                    blurred_image = cv2.medianBlur(image, 15)
                elif blur_method == 'bilateral':
                    blurred_image = cv2.bilateralFilter(image, 15, 75, 75)
                else:
                    blurred_image = cv2.GaussianBlur(image, (15, 15), 0)

                # 构建输出图片的完整路径
                output_image_path = os.path.join(output_blur_folder_path, filename)

                # 保存模糊处理后的图片
                cv2.imwrite(output_image_path, blurred_image)


if __name__ == '__main__':
    # 文件夹不要有中文!!!!!!!!!
    # 输入文件夹路径
    input_folder_path = './data'
    # 输出文件夹路径
    output_folder_path = './output'

    # 调用函数
    apply_blur_to_images(input_folder_path, output_folder_path)

resize 下采样

python 复制代码
import os
import cv2


def reduce_resolution(input_folder_path, output_folder_path, scale_factor, interpolation):
    # 遍历文件夹下的所有文件
    for filename in os.listdir(input_folder_path):
        # 检查文件类型是否为图片
        if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):
            # 构建输入图片的完整路径
            input_image_path = os.path.join(input_folder_path, filename)

            # 读取图片
            image = cv2.imread(input_image_path)

            # 计算目标宽度和高度
            target_width = int(image.shape[1] * scale_factor)
            target_height = int(image.shape[0] * scale_factor)

            # 调整图像尺寸
            resized_image = cv2.resize(image, (target_width, target_height), interpolation=interpolation)

            # 构建输出图片的完整路径
            interpolation_name = get_interpolation_name(interpolation)
            output_folder = os.path.join(output_folder_path, interpolation_name)
            os.makedirs(output_folder, exist_ok=True)  # 创建输出文件夹(如果不存在)
            output_image_path = os.path.join(output_folder, filename)

            # 保存调整尺寸后的图片
            cv2.imwrite(output_image_path, resized_image)


def get_interpolation_name(interpolation):
    if interpolation == cv2.INTER_NEAREST:
        return 'INTER_NEAREST'
    elif interpolation == cv2.INTER_LINEAR:
        return 'INTER_LINEAR'
    elif interpolation == cv2.INTER_CUBIC:
        return 'INTER_CUBIC'
    elif interpolation == cv2.INTER_LANCZOS4:
        return 'INTER_LANCZOS4'
    else:
        return 'UNKNOWN'


if __name__ == '__main__':
    # 文件夹不要有中文!!!!!!!!!
    # 输入文件夹路径
    input_folder_path = './data'
    # 输出文件夹路径
    output_folder_path = './output'

    # 比例系数
    scale_factor = 0.5  # 调整为原始图像的一半

    # 插值方法列表
    interpolations = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]

    # 遍历插值方法
    for interpolation in interpolations:
        # 调用函数进行图像尺寸调整
        reduce_resolution(input_folder_path, output_folder_path, scale_factor, interpolation)

遍历文件夹,结果以名字命令,方便区分

相关推荐
WWZZ20253 分钟前
快速上手大模型:深度学习12(目标检测、语义分割、序列模型)
深度学习·算法·目标检测·计算机视觉·机器人·大模型·具身智能
luoganttcc13 分钟前
RoboTron-Drive:自动驾驶领域的全能多模态大模型
人工智能·机器学习·自动驾驶
向阳逐梦37 分钟前
DC-DC Buck 电路(降压转换器)全面解析
人工智能·算法
xcLeigh37 分钟前
AI的提示词专栏:“Prompt Chaining”把多个 Prompt 串联成工作流
人工智能·ai·prompt·提示词·工作流
是店小二呀1 小时前
AI模型练好了却传不出去?这两个工具帮你破局
人工智能
galaxylove1 小时前
Gartner发布2025年人工智能和网络安全技术成熟度曲线:网络安全领域对AI的期望值达到顶峰
人工智能·安全·web安全
galaxylove1 小时前
Gartner发布CISO人工智能安全指南:将AI安全治理融入所有网络安全治理体系
人工智能·安全·web安全
依米s1 小时前
2019年人工智能大会核心议题《智联世界无限可能》
人工智能·waic·人工智能大会
IT_陈寒1 小时前
JavaScript开发者必知的7个ES2023新特性,让你的代码效率提升50%
前端·人工智能·后端