图片数据增强-resize(不同插值)、各种模糊

将图片批量进行不同的数据增强处理,并保存到不同的文件夹下。

各种不同的模糊处理

python 复制代码
import os
import cv2


def apply_blur_to_images(input_folder_path, output_folder_path):
    # 遍历文件夹下的所有文件
    for filename in os.listdir(input_folder_path):
        # 检查文件类型是否为图片
        if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):
            # 构建输入图片的完整路径
            input_image_path = os.path.join(input_folder_path, filename)

            # 读取图片
            image = cv2.imread(input_image_path)

            # 根据不同的模糊方法进行处理
            for blur_method in ['gaussian', 'mean', 'median', 'bilateral']:
                # 创建对应的模糊文件夹
                output_blur_folder_path = os.path.join(output_folder_path, blur_method)
                os.makedirs(output_blur_folder_path, exist_ok=True)

                # 根据选择的模糊方法进行处理
                if blur_method == 'mean':
                    blurred_image = cv2.blur(image, (15, 15))
                elif blur_method == 'median':
                    blurred_image = cv2.medianBlur(image, 15)
                elif blur_method == 'bilateral':
                    blurred_image = cv2.bilateralFilter(image, 15, 75, 75)
                else:
                    blurred_image = cv2.GaussianBlur(image, (15, 15), 0)

                # 构建输出图片的完整路径
                output_image_path = os.path.join(output_blur_folder_path, filename)

                # 保存模糊处理后的图片
                cv2.imwrite(output_image_path, blurred_image)


if __name__ == '__main__':
    # 文件夹不要有中文!!!!!!!!!
    # 输入文件夹路径
    input_folder_path = './data'
    # 输出文件夹路径
    output_folder_path = './output'

    # 调用函数
    apply_blur_to_images(input_folder_path, output_folder_path)

resize 下采样

python 复制代码
import os
import cv2


def reduce_resolution(input_folder_path, output_folder_path, scale_factor, interpolation):
    # 遍历文件夹下的所有文件
    for filename in os.listdir(input_folder_path):
        # 检查文件类型是否为图片
        if filename.endswith('.jpg') or filename.endswith('.jpeg') or filename.endswith('.png'):
            # 构建输入图片的完整路径
            input_image_path = os.path.join(input_folder_path, filename)

            # 读取图片
            image = cv2.imread(input_image_path)

            # 计算目标宽度和高度
            target_width = int(image.shape[1] * scale_factor)
            target_height = int(image.shape[0] * scale_factor)

            # 调整图像尺寸
            resized_image = cv2.resize(image, (target_width, target_height), interpolation=interpolation)

            # 构建输出图片的完整路径
            interpolation_name = get_interpolation_name(interpolation)
            output_folder = os.path.join(output_folder_path, interpolation_name)
            os.makedirs(output_folder, exist_ok=True)  # 创建输出文件夹(如果不存在)
            output_image_path = os.path.join(output_folder, filename)

            # 保存调整尺寸后的图片
            cv2.imwrite(output_image_path, resized_image)


def get_interpolation_name(interpolation):
    if interpolation == cv2.INTER_NEAREST:
        return 'INTER_NEAREST'
    elif interpolation == cv2.INTER_LINEAR:
        return 'INTER_LINEAR'
    elif interpolation == cv2.INTER_CUBIC:
        return 'INTER_CUBIC'
    elif interpolation == cv2.INTER_LANCZOS4:
        return 'INTER_LANCZOS4'
    else:
        return 'UNKNOWN'


if __name__ == '__main__':
    # 文件夹不要有中文!!!!!!!!!
    # 输入文件夹路径
    input_folder_path = './data'
    # 输出文件夹路径
    output_folder_path = './output'

    # 比例系数
    scale_factor = 0.5  # 调整为原始图像的一半

    # 插值方法列表
    interpolations = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]

    # 遍历插值方法
    for interpolation in interpolations:
        # 调用函数进行图像尺寸调整
        reduce_resolution(input_folder_path, output_folder_path, scale_factor, interpolation)

遍历文件夹,结果以名字命令,方便区分

相关推荐
IT_陈寒2 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
逛逛GitHub3 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心3 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
CoovallyAIHub4 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub4 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
aneasystone本尊5 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒6 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊16 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三16 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯17 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能