PyTorch 中 reshape 函数用法示例

PyTorch 中 reshape 函数用法示例

在 PyTorch 中,reshape 函数用于改变张量的形状,而不改变其中的数据。下面是一些关于 reshape 函数的常见用法示例。

基本语法

复制代码
torch.reshape(input, shape)  
# input: 要重塑的张量。
# shape: 目标形状,可以是一个整数元组或列表。

示例1:将一维张量转为二维张量(重要)

复制代码
import torch  

# 创建一个一维张量  
tensor_1d = torch.tensor([1, 2, 3, 4, 5, 6])  

# 使用 reshape 将其转为形状为 (2, 3) 的二维张量  
tensor_2d = tensor_1d.reshape(2, 3)  

print(tensor_2d)

输出:

复制代码
tensor([[1, 2, 3],  
        [4, 5, 6]])

示例 2:使用负数维度自动推导形状(重要)

在 reshape 中可以使用 -1 表示自动推导该维度的大小。

复制代码
# 创建一个一维张量  
tensor_1d = torch.tensor([1, 2, 3, 4, 5, 6])  

# 使用 -1 自动推导维度  
tensor_2d = tensor_1d.reshape(3, -1)  

print(tensor_2d)

输出:

复制代码
tensor([[1, 2],  
        [3, 4],  
        [5, 6]])

在这里,-1 的意思是由其他维度的大小推导出来的。

示例 3:将三维张量展平为二维张量

假设有一个形状为 (2, 3, 4) 的三维张量,可以将其展平为形状为 (2, 12) 的二维张量。

复制代码
# 创建一个三维张量  
tensor_3d = torch.randn(2, 3, 4)  # 随机生成一个张量  
print(tensor_3d)
# 重塑为二维张量  
tensor_2d = tensor_3d.reshape(2, -1)  
print(tensor_2d)
print(tensor_2d.shape)  # 输出应该为 torch.Size([2, 12])

输出:

复制代码
tensor([[[-2.0344, -0.0268,  1.4198,  0.5537],
         [ 2.1429, -0.8317, -1.6704,  0.3521],
         [ 0.4205,  0.0552,  1.8191,  0.4051]],

        [[-0.5695,  0.2553, -0.8192, -1.3156],
         [ 0.8952, -0.6411,  1.0547,  0.7071],
         [-0.1367, -2.2702,  0.6299, -0.7946]]])
         
tensor([[-2.0344, -0.0268,  1.4198,  0.5537,  2.1429, -0.8317, -1.6704,  0.3521,
          0.4205,  0.0552,  1.8191,  0.4051],
        [-0.5695,  0.2553, -0.8192, -1.3156,  0.8952, -0.6411,  1.0547,  0.7071,
         -0.1367, -2.2702,  0.6299, -0.7946]])
         
torch.Size([2, 12])

示例4:调换维度

如果你想把一个矩阵的行和列互换,可以先使用 reshape 将张量改变形状,再使用 .t() 方法进行转置(若适用)。

复制代码
# 创建一个二维张量  
tensor_2d = torch.tensor([[1, 2, 3], [4, 5, 6]])  

# 使用 reshape 先改变形状后,再用 .t() 转置  
tensor_transposed = tensor_2d.reshape(3, 2).t()  # 先变成 3x2 然后转置  

print(tensor_transposed)

输出:

复制代码
tensor([[1, 4],  
        [2, 5],  
        [3, 6]])

总结

  • reshape 是用于改变张量形状的工具,数据不变。
  • 可以使用 -1 进行自动推导。
  • 适用于多维张量的重塑,便于后续的数据处理和建模。
相关推荐
Akamai中国7 分钟前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·云服务·云存储
CCPC不拿奖不改名9 分钟前
数据处理与分析:数据可视化的面试习题
开发语言·python·信息可视化·面试·职场和发展
液态不合群12 分钟前
线程池和高并发
开发语言·python
雨大王51212 分钟前
汽车AI智能体矩阵:驱动行业智能化变革的新范式
人工智能·汽车
SmartRadio24 分钟前
在CH585M代码中如何精细化配置PMU(电源管理单元)和RAM保留
linux·c语言·开发语言·人工智能·单片机·嵌入式硬件·lora
旦莫30 分钟前
Pytest教程:Pytest与主流测试框架对比
人工智能·python·pytest
●VON34 分钟前
从模型到价值:MLOps 工程体系全景解析
人工智能·学习·制造·von
数据大魔方40 分钟前
【期货量化实战】螺纹钢量化交易指南:品种特性与策略实战(TqSdk完整方案)
python·算法·github·程序员创富·期货程序化·期货量化·交易策略实战
智慧地球(AI·Earth)1 小时前
Codex配置问题解析:wire_api格式不匹配导致的“Reconnecting...”循环
开发语言·人工智能·vscode·codex·claude code
旻璿gg1 小时前
paddleocr、paddleocrvl、ppocrv5
python