Pandas DataFrame在预测时同样需要传入一个带有相同特征名称的数据框

问题

修改前的代码

python 复制代码
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

music_data=pd.read_csv("music.csv")
X= music_data.drop(columns=['genre'])
y=music_data['genre']
model=DecisionTreeClassifier()
model.fit(X,y)
predictions=model.predict([  [21,1],[22,0]  ])
predictions

修改后的代码

python 复制代码
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

music_data=pd.read_csv("music.csv")
X= music_data.drop(columns=['genre'])
y=music_data['genre']
model=DecisionTreeClassifier()
model.fit(X,y)
pred_data=pd.DataFrame([ [21,1],[22,0]],columns=X.columns )
#predictions=model.predict([  [21,1],[22,0]  ])
predictions=model.predict(pred_data)
predictions

在提供的代码中,出现了上面提到的警告,原因是 model.predict() 方法传入了一个没有特征名称列表 [ [21, 1], [22, 0] ],但模型在训练时是使用 Pandas DataFrame(包含特征名称的表格数据)进行的。

详细原因:

  • 在模型训练时 (model.fit(X, y)),你使用的是 Pandas DataFrame 对象 X,它包含了列名称(即特征名称)。
  • 但是,在预测时,你传入了一个二维的 列表 [[21, 1], [22, 0]],它没有任何特征名称(只是数据值)。这导致 scikit-learn 发出了警告,因为它期望预测数据也包含与训练数据相同的特征名称。

解决方案:

要解决这个问题,你需要在预测时使用与训练时相同的数据结构,特别是 Pandas DataFrame,并确保它有与训练数据一致的特征名称。下面是修改后的代码:

python 复制代码
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split

# 加载数据
music_data = pd.read_csv("music.csv")
X = music_data.drop(columns=['genre'])
y = music_data['genre']

# 训练模型
model = DecisionTreeClassifier()
model.fit(X, y)

# 创建预测数据,并确保它是一个包含特征名称的 DataFrame
pred_data = pd.DataFrame([[21, 1], [22, 0]], columns=X.columns)

# 进行预测
predictions = model.predict(pred_data)
print(predictions)

解释:

  1. pred_data = pd.DataFrame([[21, 1], [22, 0]], columns=X.columns)

    • 这里将预测数据封装成一个 Pandas DataFrame,并确保它的列名称与训练数据 X 中的列名称一致(通过 X.columns 获得)。
  2. 这样,model.predict(pred_data) 就不会再出现警告,因为预测数据包含了与训练数据相同的特征名称。

总结:

在训练模型时,如果使用的是带有特征名称的 Pandas DataFrame,在预测时同样需要传入一个带有相同特征名称的数据框。否则,模型会发出警告,提醒传入的数据格式与训练时不一致。

相关推荐
万粉变现经纪人4 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘transformers’问题
人工智能·python·beautifulsoup·pandas·scikit-learn·pip·ipython
史锦彪7 天前
Pandas 入门:数据分析的得力工具
数据挖掘·数据分析·pandas
Wangsk1337 天前
用 Python 批量处理 Excel:从重复值清洗到数据可视化
python·信息可视化·excel·pandas
木木子99997 天前
Pandas query() 方法详解
pandas·query
修钩.12 天前
力扣 Pandas 挑战(5)---数据分组
算法·leetcode·pandas
万粉变现经纪人12 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘plotly’问题
python·scrapy·plotly·pycharm·flask·pandas·pip
码界奇点13 天前
Python深度挖掘:openpyxl与pandas高效数据处理实战指南
开发语言·数据库·python·自动化·pandas·python3.11
码界筑梦坊13 天前
91-基于Spark的空气质量数据分析可视化系统
大数据·python·数据分析·spark·django·numpy·pandas
蔷薇のぬ13 天前
Python 使用pandas库实现Excel字典码表对照自动化处理
python·pandas
宝山哥哥14 天前
python办自动化--利用vba或者python按需求读取excel文件指定列,更改列名后,按照要求将列排序,最后填充空白单元格
python·数据分析·自动化·excel·pandas