5.k8s:helm包管理器,prometheus监控,elk,k8s可视化

目录

[一、Helm 包管理器](#一、Helm 包管理器)

[1.什么是 Helm](#1.什么是 Helm)

2.安装Helm

(3)Helm常用命令

(4)目录结构

(5)使用Helm完成redis主从搭建

二、Prometheus集群监控

1.监控方案

2.Prometheus监控k8s

三、ELK日志搜集

1.elk流程

2.配置elk

(1)配置es

(2)配置logstash

(3)配置filebeat,kibana

3.kibana使用和日志检索

四、k8s可视化管理

[1. Dashboard安装](#1. Dashboard安装)

2.kubeSphere安装

五、感谢支持


一、Helm 包管理器

1.什么是 Helm

Helm是Kubernetes 包管理器,Helm 是查找、分享和使用软件构件 Kubernetes 的最优方式。

Helm 管理名为 chart 的 Kubernetes 包的工具。Helm 可以做以下的事情:

  • 从头开始创建新的 chart
  • 将 chart 打包成归档(tgz)文件
  • 与存储 chart 的仓库进行交互
  • 在现有的 Kubernetes 集群中安装和卸载 chart
  • 管理与 Helm 一起安装的 chart 的发布周期

对于Helm,有三个重要的概念:

  • chart :创建Kubernetes应用程序所必需的一组信息,将pod、service、deploy放到一个里面。
  • config :包含了可以合并到打包的chart中的配置信息,用于创建一个可发布的对象。
  • release :是一个与特定配置相结合的chart的运行实例。

2.安装Helm

这里下载3.10.2,版本太老的话会有坑。

#下载、解压二进制文件
cd /opt/k8s/
mkdir helm
cd helm/
wget https://get.helm.sh/helm-v3.10.2-linux-amd64.tar.gz
tar -zxvf helm-v3.10.2-linux-amd64.tar.gz
 
cd /opt/k8s/
chmod +x helm/
 
 
#将配置文件拷贝到指定目录
cd linux-amd64/
cp helm /usr/local/bin/
 
#查看helm
cd ~
helm version
 
#添加helm仓库

注:使用helm下载安装包的时候可能会被墙,如果下载不下来就直接去官网下载也行,之前我们下载过ingress,可参考:3.k8s:服务发布:service,ingress;配置管理:configMap,secret,热更新;持久化存储:volumes,nfs,pv,pvc-CSDN博客

(3)Helm常用命令

#列出、增加、更新、删除 chart 仓库
helm repo

#使用关键词搜索 chart
helm search

#拉取远程仓库中的 chart 到本地
helm pull

#在本地创建新的 chart
helm create

#管理 chart 依赖
helm dependency

#安装 chart
helm install

#列出所有 release
helm list
helm list -n ingress-nginx

#检查 chart 配置是否有误
helm lint

#打包本地 chart
helm package

#回滚 release 到历史版本
helm rollback

#卸载 release
helm uninstall

#升级 release
helm upgrade

(4)目录结构

mychart
├── Chart.yaml
├── charts # 该目录保存其他依赖的 chart(子 chart)
├── templates # chart 配置模板,用于渲染最终的 Kubernetes YAML 文件
│   ├── NOTES.txt # 用户运行 helm install 时候的提示信息
│   ├── _helpers.tpl # 用于创建模板时的帮助类
│   ├── deployment.yaml # Kubernetes deployment 配置
│   ├── ingress.yaml # Kubernetes ingress 配置
│   ├── service.yaml # Kubernetes service 配置
│   ├── serviceaccount.yaml # Kubernetes serviceaccount 配置
│   └── tests
│       └── test-connection.yaml
└── values.yaml # 定义 chart 模板中的自定义配置的默认值,可以在执行 helm install 或 helm update 的时候覆盖

(5)使用Helm完成redis主从搭建

#查看chart仓库
helm repo list

#添加仓库
helm repo add bitnami https://charts.bitnami.com/bitnami
helm repo add aliyun https://kubernetes.oss-cn-hangzhou.aliyuncs.com/charts
helm repo add azure http://mirror.azure.cn/kubernetes/charts

# 搜索 redis chart
helm search repo redis

# 查看安装说明
helm show readme bitnami/redis

# 先将 chart 拉到本地
cd /opt/k8s/
helm pull bitnami/redis

#解压
tar -xvf redis-17.4.3.tgz 
cd redis/

#修改配置
vim values.yaml 
##################################################
  24   storageClass: "managed-nfs-storage"
  25   redis:
  26     password: "123456"

 504     size: 1Gi
##################################################

# 安装操作
# 创建命名空间
kubectl create namespace redis

# 安装redis
cd /opt/k8s/
helm install redis ./redis/ -n redis

# 查看
kubectl get all -n redis

# 升级
helm upgrade redis ./redis/ -n redis


# 查看历史
helm history redis

# 回退到上一版本
helm rollback redis

# 回退到指定版本
helm rollback redis 3

# 删除
helm delete redis -n redis

启动redis成功:

二、Prometheus集群监控

1.监控方案

Heapster、Weave Scope、Prometheus

我们选择Prometheus。Prometheus 是一套开源的监控系统、报警、时间序列的集合,最初由 SoundCloud 开发,后来随着越来越多公司的使用,于是便独立成开源项目。自此以后,许多公司和组织都采用了 Prometheus 作为监控告警工具。

2.Prometheus监控k8s

Prometheus有两种搭建方式,一种是自定义,一种是基于kube,我们使用第二种。

因为我们k8s是1.23的版本,因此需要选择Prometheus0.10,Prometheus0.11的版本其他的版本就不行。GitHub - prometheus-operator/kube-prometheus: Use Prometheus to monitor Kubernetes and applications running on Kubernetes

我们使用0.10版本:https://github.com/prometheus-operator/kube-prometheus/tree/v0.10.0

替换镜像
cd /opt/k8s/kube-prometheus/manifests
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' prometheusOperator-deployment.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' prometheus-prometheus.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' alertmanager-alertmanager.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' kubeStateMetrics-deployment.yaml
sed -i 's/k8s.gcr.io/lank8s.cn/g' kubeStateMetrics-deployment.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' nodeExporter-daemonset.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' prometheusAdapter-deployment.yaml
sed -i 's/k8s.gcr.io/lank8s.cn/g' prometheusAdapter-deployment.yaml


# 启动并下载镜像
cd /opt/k8s/kube-prometheus/
kubectl create -f manifests/setup/
kubectl apply -f manifests/
kubectl get all -n monitoring
kubectl get po -n monitoring
kubectl get svc -n monitoring

# 在主机配置域名映射
# 路径是C:\Windows\System32\drivers\etc\hosts
192.168.200.140 grafana.wolfcode.cn
192.168.200.140 prometheus.wolfcode.cn
192.168.200.140 alertmanager.wolfcode.cn

# 添加ingress
cd manifests/
vim prometheus-ingress.yaml
####################################################################
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  namespace: monitoring
  name: prometheus-ingress
spec:
  ingressClassName: nginx
  rules:
  - host: grafana.wolfcode.cn  # 访问 Grafana 域名
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: grafana
            port:
              number: 3000
  - host: prometheus.wolfcode.cn  # 访问 Prometheus 域名
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: prometheus-k8s 
            port:
              number: 9090
  - host: alertmanager.wolfcode.cn  # 访问 alertmanager 域名
    http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: alertmanager-main
            port:
              number: 9093
####################################################################

# 启动ingress
kubectl apply -f prometheus-ingress.yaml

# 一直监控节点有没有启动成功即可
kubectl get po -n monitoring





## 卸载
kubectl delete --ignore-not-found=true -f manifests/ -f manifests/setup

注:如果需要删除命名空间monitioring,删除不掉,参考:记录一次namespace 处于Terminating状态的处理方法_mob604756ff20da的技术博客_51CTO博客

注:如果pod一直下载不下来,可能是因为污点的问题,我们将污点去掉

kubectl taint nodes kubernete140 node-role.kubernetes.io/master-

http://grafana.wolfcode.cn/

http://prometheus.wolfcode.cn/

http://alertmanager.wolfcode.cn/

三、ELK日志搜集

1.elk流程

2.配置elk

(1)配置es

# 先给主机器打一个标签
kubectl label node kubernete140 es=data
cd /opt/k8s/elk

#创建命名空间
vim namespace.yaml
############################
apiVersion: v1 
kind: Namespace 
metadata: 
  name: kube-logging
############################

# 创建es配置文件
vim es.yaml

##################################################################
--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: elasticsearch-logging 
  namespace: kube-logging 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
    kubernetes.io/name: "Elasticsearch" 
spec: 
  ports: 
  - port: 9200 
    protocol: TCP 
    targetPort: db 
  selector: 
    k8s-app: elasticsearch-logging 
--- 
apiVersion: v1 
kind: ServiceAccount 
metadata: 
  name: elasticsearch-logging 
  namespace: kube-logging 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
--- 
kind: ClusterRole 
apiVersion: rbac.authorization.k8s.io/v1 
metadata: 
  name: elasticsearch-logging 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
rules: 
- apiGroups: 
  - "" 
  resources: 
  - "services" 
  - "namespaces" 
  - "endpoints" 
  verbs: 
  - "get" 
--- 
kind: ClusterRoleBinding 
apiVersion: rbac.authorization.k8s.io/v1 
metadata: 
  namespace: kube-logging 
  name: elasticsearch-logging 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
subjects: 
- kind: ServiceAccount 
  name: elasticsearch-logging 
  namespace: kube-logging 
  apiGroup: "" 
roleRef: 
  kind: ClusterRole 
  name: elasticsearch-logging 
  apiGroup: "" 
--- 
apiVersion: apps/v1 
kind: StatefulSet #使用statefulset创建Pod 
metadata: 
  name: elasticsearch-logging #pod名称,使用statefulSet创建的Pod是有序号有顺序的 
  namespace: kube-logging  #命名空间 
  labels: 
    k8s-app: elasticsearch-logging 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
    srv: srv-elasticsearch 
spec: 
  serviceName: elasticsearch-logging #与svc相关联,这可以确保使用以下DNS地址访问Statefulset中的每个pod (es-cluster-[0,1,2].elasticsearch.elk.svc.cluster.local) 
  replicas: 1 #副本数量,单节点 
  selector: 
    matchLabels: 
      k8s-app: elasticsearch-logging #和pod template配置的labels相匹配 
  template: 
    metadata: 
      labels: 
        k8s-app: elasticsearch-logging 
        kubernetes.io/cluster-service: "true" 
    spec: 
      serviceAccountName: elasticsearch-logging 
      containers: 
      - image: docker.io/library/elasticsearch:7.9.3 
        name: elasticsearch-logging 
        resources: 
          limits: 
            cpu: 1000m 
            memory: 2Gi 
          requests: 
            cpu: 100m 
            memory: 500Mi 
        ports: 
        - containerPort: 9200 
          name: db 
          protocol: TCP 
        - containerPort: 9300 
          name: transport 
          protocol: TCP 
        volumeMounts: 
        - name: elasticsearch-logging 
          mountPath: /usr/share/elasticsearch/data/   #挂载点 
        env: 
        - name: "NAMESPACE" 
          valueFrom: 
            fieldRef: 
              fieldPath: metadata.namespace 
        - name: "discovery.type"  #定义单节点类型 
          value: "single-node" 
        - name: ES_JAVA_OPTS #设置Java的内存参数,可以适当进行加大调整 
          value: "-Xms512m -Xmx2g"  
      volumes: 
      - name: elasticsearch-logging 
        hostPath: 
          path: /data/es/ 
      nodeSelector: #如果需要匹配落盘节点可以添加 nodeSelect 
        es: data 
      tolerations: 
      - effect: NoSchedule 
        operator: Exists 
      initContainers: #容器初始化前的操作 
      - name: elasticsearch-logging-init 
        image: alpine:3.6 
        command: ["/sbin/sysctl", "-w", "vm.max_map_count=262144"] #添加mmap计数限制,太低可能造成内存不足的错误 
        securityContext:  #仅应用到指定的容器上,并且不会影响Volume 
          privileged: true #运行特权容器 
      - name: increase-fd-ulimit 
        image: busybox 
        imagePullPolicy: IfNotPresent 
        command: ["sh", "-c", "ulimit -n 65536"] #修改文件描述符最大数量 
        securityContext: 
          privileged: true 
      - name: elasticsearch-volume-init #es数据落盘初始化,加上777权限 
        image: alpine:3.6 
        command: 
          - chmod 
          - -R 
          - "777" 
          - /usr/share/elasticsearch/data/ 
        volumeMounts: 
        - name: elasticsearch-logging 
          mountPath: /usr/share/elasticsearch/data/

##################################################################


# 启动
kubectl apply -f namespace.yaml
kubectl apply -f es.yaml 
kubectl get po -n kube-logging
kubectl get svc -n kube-logging

(2)配置logstash

vim logstash.yaml

--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: logstash 
  namespace: kube-logging 
spec: 
  ports: 
  - port: 5044 
    targetPort: beats 
  selector: 
    type: logstash 
  clusterIP: None 
--- 
apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: logstash 
  namespace: kube-logging 
spec: 
  selector: 
    matchLabels: 
      type: logstash 
  template: 
    metadata: 
      labels: 
        type: logstash 
        srv: srv-logstash 
    spec: 
      containers: 
      - image: docker.io/kubeimages/logstash:7.9.3 #该镜像支持arm64和amd64两种架构 
        name: logstash 
        ports: 
        - containerPort: 5044 
          name: beats 
        command: 
        - logstash 
        - '-f' 
        - '/etc/logstash_c/logstash.conf' 
        env: 
        - name: "XPACK_MONITORING_ELASTICSEARCH_HOSTS" 
          value: "http://elasticsearch-logging:9200" 
        volumeMounts: 
        - name: config-volume 
          mountPath: /etc/logstash_c/ 
        - name: config-yml-volume 
          mountPath: /usr/share/logstash/config/ 
        - name: timezone 
          mountPath: /etc/localtime 
        resources: #logstash一定要加上资源限制,避免对其他业务造成资源抢占影响 
          limits: 
            cpu: 1000m 
            memory: 2048Mi 
          requests: 
            cpu: 512m 
            memory: 512Mi 
      volumes: 
      - name: config-volume 
        configMap: 
          name: logstash-conf 
          items: 
          - key: logstash.conf 
            path: logstash.conf 
      - name: timezone 
        hostPath: 
          path: /etc/localtime 
      - name: config-yml-volume 
        configMap: 
          name: logstash-yml 
          items: 
          - key: logstash.yml 
            path: logstash.yml 
 
--- 
apiVersion: v1 
kind: ConfigMap 
metadata: 
  name: logstash-conf 
  namespace: kube-logging 
  labels: 
    type: logstash 
data: 
  logstash.conf: |- 
    input {
      beats { 
        port => 5044 
      } 
    } 
    filter {  # 处理 ingress 日志 
     
      if [kubernetes][container][name] == "nginx-ingress-controller" {
        json {
          source => "message" 
          target => "ingress_log" 
        }
        if [ingress_log][requesttime] { 
          mutate { 
            convert => ["[ingress_log][requesttime]", "float"] 
          }
        }
        if [ingress_log][upstremtime] { 
          mutate { 
            convert => ["[ingress_log][upstremtime]", "float"] 
          }
        } 
        if [ingress_log][status] { 
          mutate { 
            convert => ["[ingress_log][status]", "float"] 
          }
        }
        if  [ingress_log][httphost] and [ingress_log][uri] {
          mutate { 
            add_field => {"[ingress_log][entry]" => "%{[ingress_log][httphost]}%{[ingress_log][uri]}"} 
          } 
          mutate { 
            split => ["[ingress_log][entry]","/"] 
          } 
          if [ingress_log][entry][1] { 
            mutate { 
              add_field => {"[ingress_log][entrypoint]" => "%{[ingress_log][entry][0]}/%{[ingress_log][entry][1]}"} 
              remove_field => "[ingress_log][entry]" 
            }
          } else { 
            mutate { 
              add_field => {"[ingress_log][entrypoint]" => "%{[ingress_log][entry][0]}/"} 
              remove_field => "[ingress_log][entry]" 
            }
          }
        }
      }
       
      if [kubernetes][container][name] =~ /^srv*/ {  # 处理以srv进行开头的业务服务日志
        json { 
          source => "message" 
          target => "tmp" 
        } 
        if [kubernetes][namespace] == "kube-logging" { 
          drop{} 
        } 
        if [tmp][level] { 
          mutate{ 
            add_field => {"[applog][level]" => "%{[tmp][level]}"} 
          } 
          if [applog][level] == "debug"{ 
            drop{} 
          } 
        } 
        if [tmp][msg] { 
          mutate { 
            add_field => {"[applog][msg]" => "%{[tmp][msg]}"} 
          } 
        } 
        if [tmp][func] { 
          mutate { 
            add_field => {"[applog][func]" => "%{[tmp][func]}"} 
          } 
        } 
        if [tmp][cost]{ 
          if "ms" in [tmp][cost] { 
            mutate { 
              split => ["[tmp][cost]","m"] 
              add_field => {"[applog][cost]" => "%{[tmp][cost][0]}"} 
              convert => ["[applog][cost]", "float"] 
            } 
          } else { 
            mutate { 
              add_field => {"[applog][cost]" => "%{[tmp][cost]}"} 
            }
          }
        }
        if [tmp][method] { 
          mutate { 
            add_field => {"[applog][method]" => "%{[tmp][method]}"} 
          }
        }
        if [tmp][request_url] { 
          mutate { 
            add_field => {"[applog][request_url]" => "%{[tmp][request_url]}"} 
          } 
        }
        if [tmp][meta._id] { 
          mutate { 
            add_field => {"[applog][traceId]" => "%{[tmp][meta._id]}"} 
          } 
        } 
        if [tmp][project] { 
          mutate { 
            add_field => {"[applog][project]" => "%{[tmp][project]}"} 
          }
        }
        if [tmp][time] { 
          mutate { 
            add_field => {"[applog][time]" => "%{[tmp][time]}"} 
          }
        }
        if [tmp][status] { 
          mutate { 
            add_field => {"[applog][status]" => "%{[tmp][status]}"} 
            convert => ["[applog][status]", "float"] 
          }
        }
      }
      mutate { 
        rename => ["kubernetes", "k8s"] 
        remove_field => "beat" 
        remove_field => "tmp" 
        remove_field => "[k8s][labels][app]" 
      }
    }
    output { 
      elasticsearch { 
        hosts => ["http://elasticsearch-logging:9200"] 
        codec => json 
        index => "logstash-%{+YYYY.MM.dd}" #索引名称以logstash+日志进行每日新建 
      } 
    } 
---
 
apiVersion: v1 
kind: ConfigMap 
metadata: 
  name: logstash-yml 
  namespace: kube-logging 
  labels: 
    type: logstash 
data: 
  logstash.yml: |- 
    http.host: "0.0.0.0" 
    xpack.monitoring.elasticsearch.hosts: http://elasticsearch-logging:9200

# 启动
kubectl apply -f logstash.yaml 
kubectl get po -n kube-logging

(3)配置filebeat,kibana

vim filebeat.yaml

--- 
apiVersion: v1 
kind: ConfigMap 
metadata: 
  name: filebeat-config 
  namespace: kube-logging 
  labels: 
    k8s-app: filebeat 
data: 
  filebeat.yml: |- 
    filebeat.inputs: 
    - type: container 
      enable: true
      paths: 
        - /var/log/containers/*.log #这里是filebeat采集挂载到pod中的日志目录 
      processors: 
        - add_kubernetes_metadata: #添加k8s的字段用于后续的数据清洗 
            host: ${NODE_NAME}
            matchers: 
            - logs_path: 
                logs_path: "/var/log/containers/" 
    output.logstash: #因为还需要部署logstash进行数据的清洗,因此filebeat是把数据推到logstash中 
       hosts: ["logstash:5044"] 
       enabled: true 
--- 
apiVersion: v1 
kind: ServiceAccount 
metadata: 
  name: filebeat 
  namespace: kube-logging 
  labels: 
    k8s-app: filebeat
--- 
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole 
metadata: 
  name: filebeat 
  labels: 
    k8s-app: filebeat 
rules: 
- apiGroups: [""] # "" indicates the core API group 
  resources: 
  - namespaces 
  - pods 
  verbs: ["get", "watch", "list"] 
--- 
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding 
metadata: 
  name: filebeat 
subjects: 
- kind: ServiceAccount 
  name: filebeat 
  namespace: kube-logging 
roleRef: 
  kind: ClusterRole 
  name: filebeat 
  apiGroup: rbac.authorization.k8s.io 
--- 
apiVersion: apps/v1 
kind: DaemonSet 
metadata: 
  name: filebeat 
  namespace: kube-logging 
  labels: 
    k8s-app: filebeat 
spec: 
  selector: 
    matchLabels: 
      k8s-app: filebeat 
  template: 
    metadata: 
      labels: 
        k8s-app: filebeat 
    spec: 
      serviceAccountName: filebeat 
      terminationGracePeriodSeconds: 30 
      containers: 
      - name: filebeat 
        image: docker.io/kubeimages/filebeat:7.9.3 #该镜像支持arm64和amd64两种架构 
        args: [ 
          "-c", "/etc/filebeat.yml", 
          "-e","-httpprof","0.0.0.0:6060" 
        ] 
        env: 
        - name: NODE_NAME 
          valueFrom: 
            fieldRef: 
              fieldPath: spec.nodeName 
        - name: ELASTICSEARCH_HOST 
          value: elasticsearch-logging 
        - name: ELASTICSEARCH_PORT 
          value: "9200" 
        securityContext: 
          runAsUser: 0 
        resources: 
          limits: 
            memory: 1000Mi 
            cpu: 1000m 
          requests: 
            memory: 100Mi 
            cpu: 100m 
        volumeMounts: 
        - name: config #挂载的是filebeat的配置文件 
          mountPath: /etc/filebeat.yml 
          readOnly: true 
          subPath: filebeat.yml 
        - name: data #持久化filebeat数据到宿主机上 
          mountPath: /usr/share/filebeat/data 
        - name: varlibdockercontainers #这里主要是把宿主机上的源日志目录挂载到filebeat容器中,如果没有修改docker或者containerd的runtime进行了标准的日志落盘路径,可以把mountPath改为/var/lib 
          mountPath: /var/lib
          readOnly: true 
        - name: varlog #这里主要是把宿主机上/var/log/pods和/var/log/containers的软链接挂载到filebeat容器中 
          mountPath: /var/log/ 
          readOnly: true 
        - name: timezone 
          mountPath: /etc/localtime 
      volumes: 
      - name: config 
        configMap: 
          defaultMode: 0600 
          name: filebeat-config 
      - name: varlibdockercontainers 
        hostPath: #如果没有修改docker或者containerd的runtime进行了标准的日志落盘路径,可以把path改为/var/lib 
          path: /var/lib
      - name: varlog 
        hostPath: 
          path: /var/log/ 
      - name: inputs 
        configMap: 
          defaultMode: 0600 
          name: filebeat-inputs 
      - name: data 
        hostPath: 
          path: /data/filebeat-data 
          type: DirectoryOrCreate 
      - name: timezone 
        hostPath: 
          path: /etc/localtime 
      tolerations: #加入容忍能够调度到每一个节点 
      - effect: NoExecute 
        key: dedicated 
        operator: Equal 
        value: gpu 
      - effect: NoSchedule 
        operator: Exists

vim kibana.yaml

---
apiVersion: v1
kind: ConfigMap
metadata:
  namespace: kube-logging
  name: kibana-config
  labels:
    k8s-app: kibana
data:
  kibana.yml: |-
    server.name: kibana
    server.host: "0"
    i18n.locale: zh-CN                      #设置默认语言为中文
    elasticsearch:
      hosts: ${ELASTICSEARCH_HOSTS}         #es集群连接地址,由于我这都都是k8s部署且在一个ns下,可以直接使用service name连接
--- 
apiVersion: v1 
kind: Service 
metadata: 
  name: kibana 
  namespace: kube-logging 
  labels: 
    k8s-app: kibana 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
    kubernetes.io/name: "Kibana" 
    srv: srv-kibana 
spec: 
  type: NodePort
  ports: 
  - port: 5601 
    protocol: TCP 
    targetPort: ui 
  selector: 
    k8s-app: kibana 
--- 
apiVersion: apps/v1 
kind: Deployment 
metadata: 
  name: kibana 
  namespace: kube-logging 
  labels: 
    k8s-app: kibana 
    kubernetes.io/cluster-service: "true" 
    addonmanager.kubernetes.io/mode: Reconcile 
    srv: srv-kibana 
spec: 
  replicas: 1 
  selector: 
    matchLabels: 
      k8s-app: kibana 
  template: 
    metadata: 
      labels: 
        k8s-app: kibana 
    spec: 
      containers: 
      - name: kibana 
        image: docker.io/kubeimages/kibana:7.9.3 #该镜像支持arm64和amd64两种架构 
        resources: 
          limits: 
            cpu: 1000m 
          requests: 
            cpu: 100m 
        env: 
          - name: ELASTICSEARCH_HOSTS 
            value: http://elasticsearch-logging:9200 
        ports: 
        - containerPort: 5601 
          name: ui 
          protocol: TCP 
        volumeMounts:
        - name: config
          mountPath: /usr/share/kibana/config/kibana.yml
          readOnly: true
          subPath: kibana.yml
      volumes:
      - name: config
        configMap:
          name: kibana-config
--- 
apiVersion: networking.k8s.io/v1
kind: Ingress 
metadata: 
  name: kibana 
  namespace: kube-logging 
spec: 
  ingressClassName: nginx
  rules: 
  - host: kibana.wolfcode.cn
    http: 
      paths: 
      - path: / 
        pathType: Prefix
        backend: 
          service:
            name: kibana 
            port:
              number: 5601

# 启动
kubectl apply -f filebeat.yaml -f kibana.yaml 
kubectl get po -n kube-logging
kubectl get svc -n kube-logging

# 在svc中可以看到端口,直接访问即可

3.kibana使用和日志检索

先找到Stack Management:

四、k8s可视化管理

国内比较多的有:Kubernetes Dashboard,kubesphere,Rancher,Kuboard。

1. Dashboard安装

# 下载recommended.yaml
cd /opt/k8s/dashboard
wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.7.0/aio/deploy/recommended.yaml

# 修改一下配置文件
#########################################
#第40行新增
  type: NodePort
#########################################

# 运行
kubectl apply -f recommended.yaml 
kubectl get po -n kubernetes-dashboard
kubectl get svc -n  kubernetes-dashboard

#svc中会有端口,可以访问页面,得用https访问

注:你直接apply这个yaml很大概率下载不下来,因为用的是外国的镜像,我们替换镜像地址:

#194行的kubernetesui/dashboard:v2.7.0镜像地址变更为
image: registry.cn-hangzhou.aliyuncs.com/google_containers/dashboard:v2.7.0


#280行的kubernetesui/metrics-scraper:v1.0.8镜像地址变更为
image: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-scraper:v1.0.8

我们选择token方式。

获取token

# 配置所有权限的账号
cd /opt/k8s/dashboard
vim dashboard-admin.yaml

#################################################
apiVersion: v1 
kind: ServiceAccount 
metadata: 
  labels: 
    k8s-app: kubernetes-dashboard 
  name: dashboard-admin 
  namespace: kubernetes-dashboard 
--- 
apiVersion: rbac.authorization.k8s.io/v1 
kind: ClusterRoleBinding 
metadata: 
  name: dashboard-admin-cluster-role 
roleRef: 
  apiGroup: rbac.authorization.k8s.io 
  kind: ClusterRole 
  name: cluster-admin 
subjects: 
  - kind: ServiceAccount
    name: dashboard-admin
    namespace: kubernetes-dashboard
#################################################

# 启动
kubectl apply -f dashboard-admin.yaml 
kubectl get sa -n kubernetes-dashboard
kubectl describe sa dashboard-admin -n  kubernetes-dashboard

# 通过账户详情可以看到有一个属性叫Mountable secrets,这里的secret就是对应的值
kubectl describe secrets dashboard-admin-token-248cr -n  kubernetes-dashboard

我们将token复制进去,就可以登录了:

改成简体中文:

左侧可以查看,右上角加号可以添加:

2.kubeSphere安装

官网地址:面向云原生应用的容器混合云,支持 Kubernetes 多集群管理的 PaaS 容器云平台解决方案 | KubeSphere

# 先把dashboard删掉
cd /opt/k8s/
kubectl delete -f dashboard/

# 一键安装
helm upgrade --install -n kubesphere-system --create-namespace ks-core https://charts.kubesphere.io/main/ks-core-1.1.2.tgz --debug --wait --set global.imageRegistry=swr.cn-southwest-2.myhuaweicloud.com/ks  --set extension.imageRegistry=swr.cn-southwest-2.myhuaweicloud.com/ks

# 登录
http://192.168.200.140:30880/
账号:admin
密码:P@88w0rd

首次登录修改完密码后如下:

五、感谢支持

感谢各位大佬支持,如果觉得满意可以请喝一杯咖啡吗:

相关推荐
云和数据.ChenGuang37 分钟前
02 DHCP搭建
运维·网络·docker·容器·运维开发
_Matthew2 小时前
学习Zookeeper
分布式·zookeeper·云原生
赫萝的红苹果3 小时前
docker容器化部署springboot项目
spring boot·docker·容器
kiddkid5 小时前
微服务02
微服务·云原生·架构
sxy1993sxy20186 小时前
k8s rainbond centos7/win10 -20241124
云原生·容器·kubernetes
运维&陈同学6 小时前
【zookeeper02】消息队列与微服务之zookeeper单机部署
linux·服务器·分布式·微服务·zookeeper·云原生·消息队列·云计算
loveLifeLoveCoding7 小时前
docker 相关组成
docker·容器
ZHOU_WUYI9 小时前
windows 中docker desktop 安装
运维·docker·容器
Python私教9 小时前
Python 使用 Token 认证方案连接 Kubernetes (k8s) 的详细过程
开发语言·python·kubernetes
风霜不见闲沉月10 小时前
k8s网络服务
linux·容器·kubernetes