目录
[一、Helm 包管理器](#一、Helm 包管理器)
[1.什么是 Helm](#1.什么是 Helm)
[1. Dashboard安装](#1. Dashboard安装)
一、Helm 包管理器
1.什么是 Helm
Helm是Kubernetes 包管理器,Helm 是查找、分享和使用软件构件 Kubernetes 的最优方式。
Helm 管理名为 chart 的 Kubernetes 包的工具。Helm 可以做以下的事情:
- 从头开始创建新的 chart
- 将 chart 打包成归档(tgz)文件
- 与存储 chart 的仓库进行交互
- 在现有的 Kubernetes 集群中安装和卸载 chart
- 管理与 Helm 一起安装的 chart 的发布周期
对于Helm,有三个重要的概念:
- chart :创建Kubernetes应用程序所必需的一组信息,将pod、service、deploy放到一个里面。
- config :包含了可以合并到打包的chart中的配置信息,用于创建一个可发布的对象。
- release :是一个与特定配置相结合的chart的运行实例。
2.安装Helm
这里下载3.10.2,版本太老的话会有坑。
#下载、解压二进制文件
cd /opt/k8s/
mkdir helm
cd helm/
wget https://get.helm.sh/helm-v3.10.2-linux-amd64.tar.gz
tar -zxvf helm-v3.10.2-linux-amd64.tar.gz
cd /opt/k8s/
chmod +x helm/
#将配置文件拷贝到指定目录
cd linux-amd64/
cp helm /usr/local/bin/
#查看helm
cd ~
helm version
#添加helm仓库
注:使用helm下载安装包的时候可能会被墙,如果下载不下来就直接去官网下载也行,之前我们下载过ingress,可参考:3.k8s:服务发布:service,ingress;配置管理:configMap,secret,热更新;持久化存储:volumes,nfs,pv,pvc-CSDN博客
(3)Helm常用命令
#列出、增加、更新、删除 chart 仓库
helm repo
#使用关键词搜索 chart
helm search
#拉取远程仓库中的 chart 到本地
helm pull
#在本地创建新的 chart
helm create
#管理 chart 依赖
helm dependency
#安装 chart
helm install
#列出所有 release
helm list
helm list -n ingress-nginx
#检查 chart 配置是否有误
helm lint
#打包本地 chart
helm package
#回滚 release 到历史版本
helm rollback
#卸载 release
helm uninstall
#升级 release
helm upgrade
(4)目录结构
mychart
├── Chart.yaml
├── charts # 该目录保存其他依赖的 chart(子 chart)
├── templates # chart 配置模板,用于渲染最终的 Kubernetes YAML 文件
│ ├── NOTES.txt # 用户运行 helm install 时候的提示信息
│ ├── _helpers.tpl # 用于创建模板时的帮助类
│ ├── deployment.yaml # Kubernetes deployment 配置
│ ├── ingress.yaml # Kubernetes ingress 配置
│ ├── service.yaml # Kubernetes service 配置
│ ├── serviceaccount.yaml # Kubernetes serviceaccount 配置
│ └── tests
│ └── test-connection.yaml
└── values.yaml # 定义 chart 模板中的自定义配置的默认值,可以在执行 helm install 或 helm update 的时候覆盖
(5)使用Helm完成redis主从搭建
#查看chart仓库
helm repo list
#添加仓库
helm repo add bitnami https://charts.bitnami.com/bitnami
helm repo add aliyun https://kubernetes.oss-cn-hangzhou.aliyuncs.com/charts
helm repo add azure http://mirror.azure.cn/kubernetes/charts
# 搜索 redis chart
helm search repo redis
# 查看安装说明
helm show readme bitnami/redis
# 先将 chart 拉到本地
cd /opt/k8s/
helm pull bitnami/redis
#解压
tar -xvf redis-17.4.3.tgz
cd redis/
#修改配置
vim values.yaml
##################################################
24 storageClass: "managed-nfs-storage"
25 redis:
26 password: "123456"
504 size: 1Gi
##################################################
# 安装操作
# 创建命名空间
kubectl create namespace redis
# 安装redis
cd /opt/k8s/
helm install redis ./redis/ -n redis
# 查看
kubectl get all -n redis
# 升级
helm upgrade redis ./redis/ -n redis
# 查看历史
helm history redis
# 回退到上一版本
helm rollback redis
# 回退到指定版本
helm rollback redis 3
# 删除
helm delete redis -n redis
启动redis成功:
二、Prometheus集群监控
1.监控方案
Heapster、Weave Scope、Prometheus
我们选择Prometheus。Prometheus 是一套开源的监控系统、报警、时间序列的集合,最初由 SoundCloud 开发,后来随着越来越多公司的使用,于是便独立成开源项目。自此以后,许多公司和组织都采用了 Prometheus 作为监控告警工具。
2.Prometheus监控k8s
Prometheus有两种搭建方式,一种是自定义,一种是基于kube,我们使用第二种。
因为我们k8s是1.23的版本,因此需要选择Prometheus0.10,Prometheus0.11的版本其他的版本就不行。GitHub - prometheus-operator/kube-prometheus: Use Prometheus to monitor Kubernetes and applications running on Kubernetes
我们使用0.10版本:https://github.com/prometheus-operator/kube-prometheus/tree/v0.10.0
替换镜像
cd /opt/k8s/kube-prometheus/manifests
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' prometheusOperator-deployment.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' prometheus-prometheus.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' alertmanager-alertmanager.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' kubeStateMetrics-deployment.yaml
sed -i 's/k8s.gcr.io/lank8s.cn/g' kubeStateMetrics-deployment.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' nodeExporter-daemonset.yaml
sed -i 's/quay.io/quay.mirrors.ustc.edu.cn/g' prometheusAdapter-deployment.yaml
sed -i 's/k8s.gcr.io/lank8s.cn/g' prometheusAdapter-deployment.yaml
# 启动并下载镜像
cd /opt/k8s/kube-prometheus/
kubectl create -f manifests/setup/
kubectl apply -f manifests/
kubectl get all -n monitoring
kubectl get po -n monitoring
kubectl get svc -n monitoring
# 在主机配置域名映射
# 路径是C:\Windows\System32\drivers\etc\hosts
192.168.200.140 grafana.wolfcode.cn
192.168.200.140 prometheus.wolfcode.cn
192.168.200.140 alertmanager.wolfcode.cn
# 添加ingress
cd manifests/
vim prometheus-ingress.yaml
####################################################################
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
namespace: monitoring
name: prometheus-ingress
spec:
ingressClassName: nginx
rules:
- host: grafana.wolfcode.cn # 访问 Grafana 域名
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: grafana
port:
number: 3000
- host: prometheus.wolfcode.cn # 访问 Prometheus 域名
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: prometheus-k8s
port:
number: 9090
- host: alertmanager.wolfcode.cn # 访问 alertmanager 域名
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: alertmanager-main
port:
number: 9093
####################################################################
# 启动ingress
kubectl apply -f prometheus-ingress.yaml
# 一直监控节点有没有启动成功即可
kubectl get po -n monitoring
## 卸载
kubectl delete --ignore-not-found=true -f manifests/ -f manifests/setup
注:如果需要删除命名空间monitioring,删除不掉,参考:记录一次namespace 处于Terminating状态的处理方法_mob604756ff20da的技术博客_51CTO博客
注:如果pod一直下载不下来,可能是因为污点的问题,我们将污点去掉
kubectl taint nodes kubernete140 node-role.kubernetes.io/master-
http://prometheus.wolfcode.cn/
http://alertmanager.wolfcode.cn/
三、ELK日志搜集
1.elk流程
2.配置elk
(1)配置es
# 先给主机器打一个标签
kubectl label node kubernete140 es=data
cd /opt/k8s/elk
#创建命名空间
vim namespace.yaml
############################
apiVersion: v1
kind: Namespace
metadata:
name: kube-logging
############################
# 创建es配置文件
vim es.yaml
##################################################################
---
apiVersion: v1
kind: Service
metadata:
name: elasticsearch-logging
namespace: kube-logging
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "Elasticsearch"
spec:
ports:
- port: 9200
protocol: TCP
targetPort: db
selector:
k8s-app: elasticsearch-logging
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: elasticsearch-logging
namespace: kube-logging
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: elasticsearch-logging
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
rules:
- apiGroups:
- ""
resources:
- "services"
- "namespaces"
- "endpoints"
verbs:
- "get"
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
namespace: kube-logging
name: elasticsearch-logging
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
subjects:
- kind: ServiceAccount
name: elasticsearch-logging
namespace: kube-logging
apiGroup: ""
roleRef:
kind: ClusterRole
name: elasticsearch-logging
apiGroup: ""
---
apiVersion: apps/v1
kind: StatefulSet #使用statefulset创建Pod
metadata:
name: elasticsearch-logging #pod名称,使用statefulSet创建的Pod是有序号有顺序的
namespace: kube-logging #命名空间
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
srv: srv-elasticsearch
spec:
serviceName: elasticsearch-logging #与svc相关联,这可以确保使用以下DNS地址访问Statefulset中的每个pod (es-cluster-[0,1,2].elasticsearch.elk.svc.cluster.local)
replicas: 1 #副本数量,单节点
selector:
matchLabels:
k8s-app: elasticsearch-logging #和pod template配置的labels相匹配
template:
metadata:
labels:
k8s-app: elasticsearch-logging
kubernetes.io/cluster-service: "true"
spec:
serviceAccountName: elasticsearch-logging
containers:
- image: docker.io/library/elasticsearch:7.9.3
name: elasticsearch-logging
resources:
limits:
cpu: 1000m
memory: 2Gi
requests:
cpu: 100m
memory: 500Mi
ports:
- containerPort: 9200
name: db
protocol: TCP
- containerPort: 9300
name: transport
protocol: TCP
volumeMounts:
- name: elasticsearch-logging
mountPath: /usr/share/elasticsearch/data/ #挂载点
env:
- name: "NAMESPACE"
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: "discovery.type" #定义单节点类型
value: "single-node"
- name: ES_JAVA_OPTS #设置Java的内存参数,可以适当进行加大调整
value: "-Xms512m -Xmx2g"
volumes:
- name: elasticsearch-logging
hostPath:
path: /data/es/
nodeSelector: #如果需要匹配落盘节点可以添加 nodeSelect
es: data
tolerations:
- effect: NoSchedule
operator: Exists
initContainers: #容器初始化前的操作
- name: elasticsearch-logging-init
image: alpine:3.6
command: ["/sbin/sysctl", "-w", "vm.max_map_count=262144"] #添加mmap计数限制,太低可能造成内存不足的错误
securityContext: #仅应用到指定的容器上,并且不会影响Volume
privileged: true #运行特权容器
- name: increase-fd-ulimit
image: busybox
imagePullPolicy: IfNotPresent
command: ["sh", "-c", "ulimit -n 65536"] #修改文件描述符最大数量
securityContext:
privileged: true
- name: elasticsearch-volume-init #es数据落盘初始化,加上777权限
image: alpine:3.6
command:
- chmod
- -R
- "777"
- /usr/share/elasticsearch/data/
volumeMounts:
- name: elasticsearch-logging
mountPath: /usr/share/elasticsearch/data/
##################################################################
# 启动
kubectl apply -f namespace.yaml
kubectl apply -f es.yaml
kubectl get po -n kube-logging
kubectl get svc -n kube-logging
(2)配置logstash
vim logstash.yaml
---
apiVersion: v1
kind: Service
metadata:
name: logstash
namespace: kube-logging
spec:
ports:
- port: 5044
targetPort: beats
selector:
type: logstash
clusterIP: None
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: logstash
namespace: kube-logging
spec:
selector:
matchLabels:
type: logstash
template:
metadata:
labels:
type: logstash
srv: srv-logstash
spec:
containers:
- image: docker.io/kubeimages/logstash:7.9.3 #该镜像支持arm64和amd64两种架构
name: logstash
ports:
- containerPort: 5044
name: beats
command:
- logstash
- '-f'
- '/etc/logstash_c/logstash.conf'
env:
- name: "XPACK_MONITORING_ELASTICSEARCH_HOSTS"
value: "http://elasticsearch-logging:9200"
volumeMounts:
- name: config-volume
mountPath: /etc/logstash_c/
- name: config-yml-volume
mountPath: /usr/share/logstash/config/
- name: timezone
mountPath: /etc/localtime
resources: #logstash一定要加上资源限制,避免对其他业务造成资源抢占影响
limits:
cpu: 1000m
memory: 2048Mi
requests:
cpu: 512m
memory: 512Mi
volumes:
- name: config-volume
configMap:
name: logstash-conf
items:
- key: logstash.conf
path: logstash.conf
- name: timezone
hostPath:
path: /etc/localtime
- name: config-yml-volume
configMap:
name: logstash-yml
items:
- key: logstash.yml
path: logstash.yml
---
apiVersion: v1
kind: ConfigMap
metadata:
name: logstash-conf
namespace: kube-logging
labels:
type: logstash
data:
logstash.conf: |-
input {
beats {
port => 5044
}
}
filter { # 处理 ingress 日志
if [kubernetes][container][name] == "nginx-ingress-controller" {
json {
source => "message"
target => "ingress_log"
}
if [ingress_log][requesttime] {
mutate {
convert => ["[ingress_log][requesttime]", "float"]
}
}
if [ingress_log][upstremtime] {
mutate {
convert => ["[ingress_log][upstremtime]", "float"]
}
}
if [ingress_log][status] {
mutate {
convert => ["[ingress_log][status]", "float"]
}
}
if [ingress_log][httphost] and [ingress_log][uri] {
mutate {
add_field => {"[ingress_log][entry]" => "%{[ingress_log][httphost]}%{[ingress_log][uri]}"}
}
mutate {
split => ["[ingress_log][entry]","/"]
}
if [ingress_log][entry][1] {
mutate {
add_field => {"[ingress_log][entrypoint]" => "%{[ingress_log][entry][0]}/%{[ingress_log][entry][1]}"}
remove_field => "[ingress_log][entry]"
}
} else {
mutate {
add_field => {"[ingress_log][entrypoint]" => "%{[ingress_log][entry][0]}/"}
remove_field => "[ingress_log][entry]"
}
}
}
}
if [kubernetes][container][name] =~ /^srv*/ { # 处理以srv进行开头的业务服务日志
json {
source => "message"
target => "tmp"
}
if [kubernetes][namespace] == "kube-logging" {
drop{}
}
if [tmp][level] {
mutate{
add_field => {"[applog][level]" => "%{[tmp][level]}"}
}
if [applog][level] == "debug"{
drop{}
}
}
if [tmp][msg] {
mutate {
add_field => {"[applog][msg]" => "%{[tmp][msg]}"}
}
}
if [tmp][func] {
mutate {
add_field => {"[applog][func]" => "%{[tmp][func]}"}
}
}
if [tmp][cost]{
if "ms" in [tmp][cost] {
mutate {
split => ["[tmp][cost]","m"]
add_field => {"[applog][cost]" => "%{[tmp][cost][0]}"}
convert => ["[applog][cost]", "float"]
}
} else {
mutate {
add_field => {"[applog][cost]" => "%{[tmp][cost]}"}
}
}
}
if [tmp][method] {
mutate {
add_field => {"[applog][method]" => "%{[tmp][method]}"}
}
}
if [tmp][request_url] {
mutate {
add_field => {"[applog][request_url]" => "%{[tmp][request_url]}"}
}
}
if [tmp][meta._id] {
mutate {
add_field => {"[applog][traceId]" => "%{[tmp][meta._id]}"}
}
}
if [tmp][project] {
mutate {
add_field => {"[applog][project]" => "%{[tmp][project]}"}
}
}
if [tmp][time] {
mutate {
add_field => {"[applog][time]" => "%{[tmp][time]}"}
}
}
if [tmp][status] {
mutate {
add_field => {"[applog][status]" => "%{[tmp][status]}"}
convert => ["[applog][status]", "float"]
}
}
}
mutate {
rename => ["kubernetes", "k8s"]
remove_field => "beat"
remove_field => "tmp"
remove_field => "[k8s][labels][app]"
}
}
output {
elasticsearch {
hosts => ["http://elasticsearch-logging:9200"]
codec => json
index => "logstash-%{+YYYY.MM.dd}" #索引名称以logstash+日志进行每日新建
}
}
---
apiVersion: v1
kind: ConfigMap
metadata:
name: logstash-yml
namespace: kube-logging
labels:
type: logstash
data:
logstash.yml: |-
http.host: "0.0.0.0"
xpack.monitoring.elasticsearch.hosts: http://elasticsearch-logging:9200
# 启动
kubectl apply -f logstash.yaml
kubectl get po -n kube-logging
(3)配置filebeat,kibana
vim filebeat.yaml
---
apiVersion: v1
kind: ConfigMap
metadata:
name: filebeat-config
namespace: kube-logging
labels:
k8s-app: filebeat
data:
filebeat.yml: |-
filebeat.inputs:
- type: container
enable: true
paths:
- /var/log/containers/*.log #这里是filebeat采集挂载到pod中的日志目录
processors:
- add_kubernetes_metadata: #添加k8s的字段用于后续的数据清洗
host: ${NODE_NAME}
matchers:
- logs_path:
logs_path: "/var/log/containers/"
output.logstash: #因为还需要部署logstash进行数据的清洗,因此filebeat是把数据推到logstash中
hosts: ["logstash:5044"]
enabled: true
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: filebeat
namespace: kube-logging
labels:
k8s-app: filebeat
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: filebeat
labels:
k8s-app: filebeat
rules:
- apiGroups: [""] # "" indicates the core API group
resources:
- namespaces
- pods
verbs: ["get", "watch", "list"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: filebeat
subjects:
- kind: ServiceAccount
name: filebeat
namespace: kube-logging
roleRef:
kind: ClusterRole
name: filebeat
apiGroup: rbac.authorization.k8s.io
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: filebeat
namespace: kube-logging
labels:
k8s-app: filebeat
spec:
selector:
matchLabels:
k8s-app: filebeat
template:
metadata:
labels:
k8s-app: filebeat
spec:
serviceAccountName: filebeat
terminationGracePeriodSeconds: 30
containers:
- name: filebeat
image: docker.io/kubeimages/filebeat:7.9.3 #该镜像支持arm64和amd64两种架构
args: [
"-c", "/etc/filebeat.yml",
"-e","-httpprof","0.0.0.0:6060"
]
env:
- name: NODE_NAME
valueFrom:
fieldRef:
fieldPath: spec.nodeName
- name: ELASTICSEARCH_HOST
value: elasticsearch-logging
- name: ELASTICSEARCH_PORT
value: "9200"
securityContext:
runAsUser: 0
resources:
limits:
memory: 1000Mi
cpu: 1000m
requests:
memory: 100Mi
cpu: 100m
volumeMounts:
- name: config #挂载的是filebeat的配置文件
mountPath: /etc/filebeat.yml
readOnly: true
subPath: filebeat.yml
- name: data #持久化filebeat数据到宿主机上
mountPath: /usr/share/filebeat/data
- name: varlibdockercontainers #这里主要是把宿主机上的源日志目录挂载到filebeat容器中,如果没有修改docker或者containerd的runtime进行了标准的日志落盘路径,可以把mountPath改为/var/lib
mountPath: /var/lib
readOnly: true
- name: varlog #这里主要是把宿主机上/var/log/pods和/var/log/containers的软链接挂载到filebeat容器中
mountPath: /var/log/
readOnly: true
- name: timezone
mountPath: /etc/localtime
volumes:
- name: config
configMap:
defaultMode: 0600
name: filebeat-config
- name: varlibdockercontainers
hostPath: #如果没有修改docker或者containerd的runtime进行了标准的日志落盘路径,可以把path改为/var/lib
path: /var/lib
- name: varlog
hostPath:
path: /var/log/
- name: inputs
configMap:
defaultMode: 0600
name: filebeat-inputs
- name: data
hostPath:
path: /data/filebeat-data
type: DirectoryOrCreate
- name: timezone
hostPath:
path: /etc/localtime
tolerations: #加入容忍能够调度到每一个节点
- effect: NoExecute
key: dedicated
operator: Equal
value: gpu
- effect: NoSchedule
operator: Exists
vim kibana.yaml
---
apiVersion: v1
kind: ConfigMap
metadata:
namespace: kube-logging
name: kibana-config
labels:
k8s-app: kibana
data:
kibana.yml: |-
server.name: kibana
server.host: "0"
i18n.locale: zh-CN #设置默认语言为中文
elasticsearch:
hosts: ${ELASTICSEARCH_HOSTS} #es集群连接地址,由于我这都都是k8s部署且在一个ns下,可以直接使用service name连接
---
apiVersion: v1
kind: Service
metadata:
name: kibana
namespace: kube-logging
labels:
k8s-app: kibana
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "Kibana"
srv: srv-kibana
spec:
type: NodePort
ports:
- port: 5601
protocol: TCP
targetPort: ui
selector:
k8s-app: kibana
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: kibana
namespace: kube-logging
labels:
k8s-app: kibana
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
srv: srv-kibana
spec:
replicas: 1
selector:
matchLabels:
k8s-app: kibana
template:
metadata:
labels:
k8s-app: kibana
spec:
containers:
- name: kibana
image: docker.io/kubeimages/kibana:7.9.3 #该镜像支持arm64和amd64两种架构
resources:
limits:
cpu: 1000m
requests:
cpu: 100m
env:
- name: ELASTICSEARCH_HOSTS
value: http://elasticsearch-logging:9200
ports:
- containerPort: 5601
name: ui
protocol: TCP
volumeMounts:
- name: config
mountPath: /usr/share/kibana/config/kibana.yml
readOnly: true
subPath: kibana.yml
volumes:
- name: config
configMap:
name: kibana-config
---
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: kibana
namespace: kube-logging
spec:
ingressClassName: nginx
rules:
- host: kibana.wolfcode.cn
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: kibana
port:
number: 5601
# 启动
kubectl apply -f filebeat.yaml -f kibana.yaml
kubectl get po -n kube-logging
kubectl get svc -n kube-logging
# 在svc中可以看到端口,直接访问即可
3.kibana使用和日志检索
先找到Stack Management:
四、k8s可视化管理
国内比较多的有:Kubernetes Dashboard,kubesphere,Rancher,Kuboard。
1. Dashboard安装
# 下载recommended.yaml
cd /opt/k8s/dashboard
wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.7.0/aio/deploy/recommended.yaml
# 修改一下配置文件
#########################################
#第40行新增
type: NodePort
#########################################
# 运行
kubectl apply -f recommended.yaml
kubectl get po -n kubernetes-dashboard
kubectl get svc -n kubernetes-dashboard
#svc中会有端口,可以访问页面,得用https访问
注:你直接apply这个yaml很大概率下载不下来,因为用的是外国的镜像,我们替换镜像地址:
#194行的kubernetesui/dashboard:v2.7.0镜像地址变更为
image: registry.cn-hangzhou.aliyuncs.com/google_containers/dashboard:v2.7.0
#280行的kubernetesui/metrics-scraper:v1.0.8镜像地址变更为
image: registry.cn-hangzhou.aliyuncs.com/google_containers/metrics-scraper:v1.0.8
我们选择token方式。
获取token
# 配置所有权限的账号
cd /opt/k8s/dashboard
vim dashboard-admin.yaml
#################################################
apiVersion: v1
kind: ServiceAccount
metadata:
labels:
k8s-app: kubernetes-dashboard
name: dashboard-admin
namespace: kubernetes-dashboard
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: dashboard-admin-cluster-role
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: dashboard-admin
namespace: kubernetes-dashboard
#################################################
# 启动
kubectl apply -f dashboard-admin.yaml
kubectl get sa -n kubernetes-dashboard
kubectl describe sa dashboard-admin -n kubernetes-dashboard
# 通过账户详情可以看到有一个属性叫Mountable secrets,这里的secret就是对应的值
kubectl describe secrets dashboard-admin-token-248cr -n kubernetes-dashboard
我们将token复制进去,就可以登录了:
改成简体中文:
左侧可以查看,右上角加号可以添加:
2.kubeSphere安装
官网地址:面向云原生应用的容器混合云,支持 Kubernetes 多集群管理的 PaaS 容器云平台解决方案 | KubeSphere
# 先把dashboard删掉
cd /opt/k8s/
kubectl delete -f dashboard/
# 一键安装
helm upgrade --install -n kubesphere-system --create-namespace ks-core https://charts.kubesphere.io/main/ks-core-1.1.2.tgz --debug --wait --set global.imageRegistry=swr.cn-southwest-2.myhuaweicloud.com/ks --set extension.imageRegistry=swr.cn-southwest-2.myhuaweicloud.com/ks
# 登录
http://192.168.200.140:30880/
账号:admin
密码:P@88w0rd
首次登录修改完密码后如下:
五、感谢支持
感谢各位大佬支持,如果觉得满意可以请喝一杯咖啡吗: