《深度学习》OpenCV 物体跟踪 原理及案例解析

目录

一、物体跟踪

1、什么是物体跟踪

2、步骤

1)选择跟踪算法

2)初始化跟踪器

3)在每个视频帧上执行跟踪

4)可选的重新初始化

3、原理

二、案例实现

1、完整代码

1)使用方式

2)运行结果

2、关于代码中selectROI的参数showCrosshair

3、使用摄像头


一、物体跟踪

1、什么是物体跟踪

物体跟踪是指在一个视频序列持续追踪特定的物体。这可以在许多应用程序中很有用,例如目标识别、视频监控和增强现实。

2、步骤

1)选择跟踪算法

OpenCV提供了多种物体跟踪算法,例如基于颜色直方图的CamShift算法、基于模板匹配的MeanShift算法、基于运动向量的光流法等。

2)初始化跟踪器

使用选定的算法,初始化物体跟踪器。这通常涉及选择感兴趣区域(ROI)或提供初始边界框。

3)在每个视频帧上执行跟踪

对于每个视频帧,使用跟踪算法来更新物体的位置。这可能涉及计算运动向量、偏移或变换。

4)可选的重新初始化

如果物体跟丢了,你可以选择重新初始化跟踪器,以确保继续跟踪。

3、原理

物体跟踪的原理基于计算机视觉和图像处理的技术。不同的算法使用不同的原理来实现物体跟踪。例如,基于颜色的跟踪算法使用颜色分布来识别并跟踪物体。模板匹配算法使用图像相似性来在连续帧中找到最佳匹配。光流法则利用像素强度之间的变化来估计物体的运动。

二、案例实现

1、完整代码

python 复制代码
import cv2
tracker = cv2.TrackerCSRT_create()  # 创建一个CSRT跟踪器,基于判别式滤波器的跟踪方法,适用于长时间跟踪
tracking = False  # 初始化跟踪标志
cap = cv2.VideoCapture('test.avi')   # 打开视频文件
while True:   # 建立死循环,遍历视频帧
    ret,frame = cap.read()   # 读取每一帧图像,返回读取状态布尔值,以及每一帧图像
    if not ret:   # 如果没有读取到视频帧,终止循环
        break
    if cv2.waitKey(1) == ord('a'):   # 等待键盘按下a键,按下后执行判断语句
        tracking = True    # 设置跟踪标志为True
        roi = cv2.selectROI('Tracking', frame, showCrosshair = False)  # showCrosshair表示是否显示十字准尾,默认为True
        # 使用selectROI函数标记感兴趣的区域ROI,Tracking为窗口名称,frame为每一帧画面,在其上标记区域
        tracker.init(frame,roi)  # 上一步标记区域ROI后,在当前这步初始化CSRT跟踪器,以便于接收新的视频帧
    if tracking:   # tracking为True表示按下了a键
        success, box = tracker.update(frame)  # 更新CSRT跟踪器状态并获取跟踪结果,返回值,success为布尔值表示是否跟踪成功,box为四元组(x,y,w,h),表示当前帧上对象的边界框
        if success:  # 如果跟踪到了
            x,y,w,h = [int(v) for v in box]   # 遍历出来跟踪到的四元组内的数据
            cv2.rectangle(frame, (x,y),(x+ w,y+ h),(0,255,0), 2)  # 在frame上绘制矩形框
    cv2.imshow( 'Tracking', frame)  # 展示跟踪的画面,因为是在frame上直接标记的
    if cv2.waitKey(100)== 27:  # 键入esc键终止循环,100表示每一帧的画面展示100毫秒
        break
# 释放资源
cap.release()  # 释放视频捕获对象
cv2.destroyAllWindows()  # 销毁所有窗口
1)使用方式

右击运行后,点击小写a键,没反应就多次点击,直至画面静止,然后鼠标选中需要识别的区域,点击空格或回车即可自动跟踪识别。

2)运行结果

2、关于代码中selectROI的参数showCrosshair

3、使用摄像头

只需将上述代码中的cap = cv2.VideoCapture('test.avi')更改为cap = cv2.VideoCapture(0)即可。(如下图所示)

相关推荐
面包会有的,牛奶也会有的。17 小时前
AI 测试平台:WHartTest V1.3.0 更新优化架构
人工智能
2501_9419820518 小时前
结合 AI 视觉:使用 OCR 识别企业微信聊天记录中的图片信息
人工智能·ocr·企业微信
事变天下18 小时前
肾尚科技完成新一轮融资,加速慢性肾脏病(CKD)精准化管理闭环渗透
大数据·人工智能
GEO AI搜索优化助手18 小时前
范式革命——从“关键词”到“意图理解”,搜索本质的演进与重构
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
大刘讲IT18 小时前
2025年企业级 AI Agent 标准化落地深度年度总结:从“对话”到“端到端价值闭环”的范式重构
大数据·人工智能·程序人生·ai·重构·制造
2301_8234380218 小时前
【无标题】解析《采用非对称自玩实现强健多机器人群集的深度强化学习方法》
数据库·人工智能·算法
沛沛老爹18 小时前
Web开发者快速上手AI Agent:提示词应用优化实战
人工智能·ai·agent·提示词·rag·入门知识
中国胖子风清扬18 小时前
SpringAI和 Langchain4j等 AI 框架之间的差异和开发经验
java·数据库·人工智能·spring boot·spring cloud·ai·langchain
极度畅想18 小时前
脑电模型实战系列(三):DEAP 数据集处理与 Russell 环状模型实战(一)
深度学习·特征提取·情感计算·脑机接口 bci·deap数据集
Dev7z18 小时前
基于Stanley算法的自动驾驶车辆路径跟踪控制研究
人工智能·机器学习·自动驾驶