数据结构——遍历二叉树

目录

什么是遍历二叉树

根据遍历序列确定二叉树

例题(根据先序中序以及后序中序求二叉树)

遍历的算法实现

先序遍历

中序遍历

后序遍历

遍历算法的分析

二叉树的层次遍历

二叉树遍历算法的应用

二叉树的建立

复制二叉树

计算二叉树深度

计算二叉树结点总数


什么是遍历二叉树

遍历定义-- 顺着某一条搜索路径巡访二叉树中的结点,使得每个结点均被访问一次,而且仅被访问一次(又称周游)。

  • "访问"的含义很广,可以是对结点作各种处理,如:输出结点的信息、修改结点的数据值等,但要求这种访问不破坏原来的数据结构。

遍历目的-- 得到树中所有结点的一个线性排列。

遍历用途--它是树结构插入、删除、修改、查找和排序运算的前提,是二又树一切运算的基础和核心。

遍历方法

依次遍历二叉树的三个组成部分,便是遍历了整个二叉树。

若规定先左后右,则只有三种情况:

由二叉树的递归定义可知,遍历左子树和遍历右子树可如同遍历二叉树一样"递归"进行。

先序(DLR)遍历二叉树的操作定义:

(1)访问根结点;

(2)先序遍历左子树;

(3)先序遍历右子树。

注:根的左子树遍历完(左子树的左子树、左子树的右子树...)才轮到根的右子树进行遍历。

示例如下:

中序遍历二叉树的操作定义:

若二叉树为空,则空操作;否则

(1)中序遍历左子树;

(2)访问根结点;

(3)中序遍历右子树。

示例:

后序遍历二叉树的操作定义:

若二叉树为空,则空操作;否则

(1)后序遍历左子树;

(2)后序遍历右子树;

(3)访问根结点。

示例:

例题:

解析

先序: 先根结点A,再遍历根A的左子树,左子树遍历完,才轮到遍历右子树,左子树的根B,再根B的左子树,以D为根,再根D的左子树,没有就根D的右子树G,根G的左子树和右子树都没有,根D的树遍历完,再根B的右子树,没有,就可以遍历根A的右子树了,根C的左子树先遍历,以根E的树,根E的左子树没有,遍历根E的右子树,以H为根的左子树和右子树都没有,遍历根C的右子树,以F为根的左右子树都没有,先序遍历结束。

中序:先以A为根的左子树,再B为根的左子树,再以D为根的左子树,没有就输出根D,再根D的右子树G输出,以B为根的左子树结束就输出根B,再遍历B的右子树,没有就输出根A,再遍历根A的右子树,以C为根的左子树,再以E为根的左子树,没有就输出根E,根E的右子树H,根H的左子树没有,输出根H,根H的右子树没有,根C的左子树遍历完毕,输出根C,再遍历根C的右子树,以F为根的左子树没有,输出根F,根F的右子树没有。

后序:以A为根的左子树先遍历,以B为根的左子树先遍历,以D为根的左子树先遍历,没有就遍历根D的右子树,根G的左子树不存在,右子树也不存在,后序输出根结点G,根D的左右子树都遍历完了,输出根结点D,B的左子树遍历完,遍历其右子树,右子树不存在,输出根结点B,根A的左子树遍历完,遍历其右子树,根C的左子树先遍历,根E的左子树先遍历,不存在,遍历根E的右子树,根H的左右子树都不存在,输出根结点H,E的左右子树都遍历完,输出根结点E,C的左子树遍历完,遍历其右子树,根F的左右子树都不存在,输出根结点F,根C的左右结点都遍历完,输出根结点C,根A的左右子树都遍历完,输出根结点A。

请写出下图所示二叉树的先序、中序和后序遍历顺序。

根据遍历序列确定二叉树

  • 若二叉树中各结点的值均不相同,则二叉树结点的先序序列、中序序列和后序序列都是唯一的。
  • 由二叉树的先序序列和中序序列,或由二叉树的后序序列和中序序列可以确定唯一一棵二叉树

例题(根据先序中序以及后序中序求二叉树)

已知先序和中序序列求二叉树

例:已知二叉树的先序和中序序列,构造出相应的二叉树

先序:A B C D E F G H I J

中序:C D B F E A I H G J

首先从先序中可以知道这棵大树的根为A,已知根A后,从中序序列中可以得知C D B F E是这棵大树的左子树,I H G J是这棵大树的右子树;再从先序序列中B C D E F得知B是左子树的根,G H I J是右子树的根,再从中序序列中可以知道C D是根为B的树的左子树,F E是右子树,以此类推,可以构造相对应的二叉树。

已知后序和中序序列求二叉树

例:已知一棵二叉树的

中序序列:B D C E A F H G

后序序列:D E C B H G F A,请画出这棵二叉树。

类似的,我们可以先从后序序列中知道这棵大树的根结点为A,再从中序序列中得知B D C E是以A为根结点的左子树,F H G是其右子树,再从后序序列D E C B中知道B是左子树的根结点,F是左子树H G F的根结点,再从中序序列可以得出以B为根结点的树没有左子树,其右子树为D C E,以F为根结点的左子树不存在,其右子树为H G,以此类推可以画出完整的二叉树。

遍历的算法实现

先序遍历

步骤:

先序的遍历序列为ABCD

算法实现

cpp 复制代码
Status PreOrderTraverse(BiTree T)
{
	if (T == NULL)return OK;//空二叉树
	else
	{
		visit(T);//访问根结点
		PreOrderTraverse(T->lchild);//递归遍历左子树
		PreOrderTraverse(T->rchild);//递归遍历右子树
	}
}

过程:指针T指向我们的二叉树的根结点,把根结点的指针T传递给前序遍历,判断T是否为空,此时不为空,输出A结点的数据域上的值,然后对左子树进行先序遍历,将当前结点的左孩子的地址传递给它自身,调用自身函数后,输出当前指针的数据域的值,也就是B结点的值,接下来访问B结点的左子树,为空返回,然后再访问B的右子树,此时T指向D结点,不为空输出其值,D结点的左右子树都为空,返回,依次返回到以A结点的树,其左子树遍历完毕,继续遍历其右子树。

中序遍历

步骤:

中序遍历序列:BDAC

算法实现

cpp 复制代码
Status InOrderTraverse(BiTree T)
{
	if (T == NULL)return OK;
	else
	{
		InOrderTraverse(T->lchild);//递归遍历左子树
		visit(T);//访问根结点
		InOrderTraverse(T->rchild);//递归遍历右子树
	}
}
后序遍历

步骤:

后序遍历序列:DBCA

算法实现

cpp 复制代码
Status PostOrderTraverse(BiTree T)
{
	if (T == NULL)return OK;
	else
	{
		PostOrderTraverse(T->lchild);//递归遍历左子树
		PostOrderTraverse(T->rchild);//递归遍历右子树
		visit(T);//访问根结点
	}
}

遍历算法的分析

如果去掉输出语句,从递归的角度看,三种算法是完全相同的,或说这三种算法的访问路径是相同的,只是访问结点的时机不同。

从虚线的出发点到终点的路径上,每个结点经过3次。

第1次经过时访问=先序遍历

第2次经过时访问=中序遍历

第3次经过时访问=后序遍历

二叉树的层次遍历

第一个访问根结点a,然后从左到右访问第二层,a的孩子b和f,再访问孩子的孩子。

对于一棵二叉树,从根结点开始,按从上到下、从左到右的顺序访问每一个结点。

每一个结点仅仅访问一次。

算法设计思路 :使用一个队列

1、将根结点进队;

2、队不空时循环:从队列中出列一个结点*p,访问它;

  • 若它有左孩子结点,将左孩子结点进队;
  • 若它有右孩子结点,将右孩子结点进队。

遍历描述:首先,根结点a入队, 队列开始出队,第一个结点是

a,a出队,然后把a的左右孩子b、f入队,再从队列中拿出最前一个结点b出队,把它的左右孩子c、d入队,再拿出f出队,把它的左孩子g入队,现在队列中还有cdg,把c出队,它的左右孩子入队,没有就拿下一个结点出队,以此类推。

代码实现:

使用队列类型定义如下

cpp 复制代码
typedef struct
{
	BTNode data[MaxSize];//存放队中元素
	int front, rear;//队头和队尾指针
}SqQueue; //顺序循环队列类型

二叉树层次遍历算法:

cpp 复制代码
void LevelOrder(BTNode* b)
{
	BTNode* p;
	SqQueue* qu;
	InitQueue(qu);//初始化队列
	enQueue(qu,b);//根结点指针进入队列
	while (!QueueEmpty(qu))
	{
		deQueue(qu,p);//出队结点
		printf("%c",p->data);//访问结点p
		if (p->lchild != NULL)enQueue(qu,p->lchild);
								//有左孩子时将其出队
		if (p->rchild != NULL)enQueue(qu, p->rchild);
								//有右孩子时将其出队
	}
}

二叉树遍历算法的应用

二叉树的建立
  • 按先序遍历序列建立二叉树的二叉链表

例:已知先序序列为:ABCDEGF

(1)从键盘输入二叉树的结点信息,建立二叉树的存储结构;

(2)在建立二叉树的过程中按照二叉树先序方式建立;

用#表示空字符

代码实现

cpp 复制代码
Status CreateBiTree(BiTree& T)//链式存储
{
	scanf(&ch);//cin>>ch;
	if (ch == "#")T = NULL;
	else
	{
		if (!(T=(BiTNode*)malloc(sizeof(BiTree))))//从内存当中分配一个结点空间
			exit(OVERFLOW);//T=new NiTNode;
		T->data = ch;
		CreateBiTree(T->lchild);//构造左孩子
		CreateBiTree(T->rchild);//构造右孩子
	}
	return OK;
}//CreateBiTree
复制二叉树

如果是空树,递归结束;

否则,申请新结点空间,复制根结点

  • 递归复制左子树
  • 递归复制右子树

代码实现

cpp 复制代码
int Copy(BiTree T, BiTree& NewT)
{
	if (T == NULL){
		NewT = NULL;return 0;//如果是空树,返回0
	}
	else
	{
		NewT = new BiTNode; NewT->data = T->data;//复制结点数据
		Copy(T->lchild, NewT->lchild);//递归复制左子树
		Copy(T->rchild, NewT->rchild);//递归复制右子树
	}
}
计算二叉树深度
  • 如果是空树,则深度为0;
  • 否则,递归计算左子树的深度记为m,递归计算右子树的深度记为n,二叉树的深度则为m与n的较大者加1。

代码实现

cpp 复制代码
int Depth(BiTree T) {
	if (T == NULL)return 0;
	else {
		m = Depth(T->lchild);//求左子树的深度
		n = Depth(T->rchild);//求右子树的深度
		if (m > n)return (m + 1);
		else      return (n + 1);
	}
}
计算二叉树结点总数
  • 如果是空树,则结点个数为0;
  • 否则,结点个数为左子树的结点个数+右子树的结点个数再+1。

代码实现

cpp 复制代码
int NodeCount(BiTree T) {
	if (T == NULL)return 0;
	else return NodeCount(T->lchild) + 
				NodeCount(T->rchild) + 1;
}

计算二叉树叶子结点数

  • 如果是空树,则叶子结点个数为0;
  • 否则,为左子树的叶子结点个数+右子树的叶子结点个数。

代码实现

cpp 复制代码
int LeadCount(BiTree T) {
	if (T == NULL) return 0;
	if (T->lchild == NULL && T->rchild == NULL)
		return 1;//如果是叶子结点返回1
	else
		return LeafCount(T->lchild) +
			   LeafCount(T->rchild);
}
相关推荐
人生在勤,不索何获-白大侠9 分钟前
day15——Java常用API(二):常见算法、正则表达式与异常处理详解
java·算法·正则表达式
小张成长计划..21 分钟前
双向链表的实现
数据结构·链表
s1533527 分钟前
数据结构之顺序表,链表,栈,队列
数据结构·数据库
Wo3Shi4七43 分钟前
双向队列
数据结构·算法·go
Wo3Shi4七1 小时前
列表
数据结构·算法·go
Wo3Shi4七1 小时前
链表
数据结构·算法·go
Wo3Shi4七1 小时前
数组
数据结构·算法·go
CoovallyAIHub1 小时前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
北方有星辰zz1 小时前
数据结构:栈
java·开发语言·数据结构
zl_dfq1 小时前
数据结构之 【树的简介】(树的(相关)概念、二叉树的概念、部分性质、满二叉树、完全二叉树)
数据结构