【抽代复习笔记】31-群(二十五):子群的拉格朗日定理和推论

定理:设S₁,S₂分别是G关于子群H的左、右陪集分解,则|S₁| = |S₂|。

证:只需证明S₁和S₂之间存在双射即可。

①定义:φ(a o H) = H o a^(-1),(S₁→S₂),设a o H = b o H,则a^(-1) o b∈H,

由H o a^(-1) = H o b^(-1)可推出φ(a o H) = φ(b o H),

显然对任意的a o H∈S₁,存在唯一的H o a^(-1)∈S₂,使得φ(a o H) = H o a^(-1),

所以φ是映射。

②对任意的H o a∈S₂,存在a^(-1) o H∈S₁,使得φ(a^(-1) o H) = H o [a^(-1)]^(-1) = H o a,

因此φ是满射。

③对任意的a o H,b o H∈S₁,若φ(a o H) = φ(b o H),则有H o a^(-1) = H o b^(-1),从而a^(-1) o [b^(-1)]^(-1) = a^(-1) o b∈H,从而有a o H = b o H,

因此φ是单射。

综上所述,φ是从S₁到S₂的一个一一映射。

所以可得|S₁| = |S₂|。

定义

设H≤G,S₁,S₂分别为G关于H的左右陪集分解,称|S₁| = |S₂|为H在G中的指数,记为[G:H]。

拉格朗日定理

G是有限群,H≤G,则[G:H] = |G|/|H|,从而|G| = |H|·[G:H],即|H|、[G:H]均整除|G|。

证:设|G| = n,|H| = m,[G:H] = k,

G:H\]表示G由k个互不相交的左陪集组成; 又\|a o H\| = \|H\|, 所以这些左陪集每一个都恰好包含m个元素, 所以G中一共有km个元素,即n = km, 即\|G\| = \|H\|·\[G:H\]。 推论 设G是有限群,a∈G,则\|a\|整除\|G\|。 证:设\|a\| = m,a可生成G的一个m阶循环子群(a) = H, 而\|a\| = \|H\| = m, 因为\|H\|整除\|G\|,所以\|a\|整除\|G\|。 例1:写出K₄,Z₄的子群。 (1)K₄(克莱因四元群)= {(1),(12)(34),(13)(24),(14)(23)},其子群有平凡子群{(1)}和K₄,非平凡子群((12)(34))(={(1),(12)(34)}),((13)(24))(={(1),(13)(24)}),((14)(23))(={(1),(14)(23)})和{(1),(12)(34),(13)(24)}。 (2)Z₄(模4的剩余类加群)= {\[0\],\[1\],\[2\],\[3\]},其子群有平凡子群{\[0\]}和Z₄,非平凡子群(\[2\])。 例2:证明,素数阶群必定是循环群。 证:设G是一个群,G的阶\|G\| = p是素数, 因为p≥2,所以G中至少有2个元素,不妨设a∈G,且a≠e,可推出\|a\|≥2, 由拉格朗日定理的推论可知,\|a\|整除\|G\| = p,又因为p是素数,所以\|a\| = 1或p, 因为\|a\|≥2,所以\|a\| = p = \|G\|, 所以G是循环群。 (待续......)

相关推荐
The_cute_cat13 分钟前
JavaScript的初步学习
开发语言·javascript·学习
山野万里__1 小时前
C++与Java内存共享技术:跨平台与跨语言实现指南
android·java·c++·笔记
Binary_ey2 小时前
超表面重构卡塞格林望远镜 | 从传统架构到新型光学系统
学习·软件需求·光学软件·超表面
roman_日积跬步-终至千里2 小时前
【学习线路】机器学习线路概述与内容关键点说明
人工智能·学习·机器学习
寻丶幽风3 小时前
论文阅读笔记——VGGT: Visual Geometry Grounded Transformer
论文阅读·笔记·transformer·三维重建·3dgs·vggt
天水幼麟4 小时前
python学习笔记(深度学习)
笔记·python·学习
you45804 小时前
小程序学习笔记:使用 MobX 实现全局数据共享,实例创建、计算属性与 Actions 方法
笔记·学习·小程序
笑衬人心。4 小时前
初学Spring AI 笔记
人工智能·笔记·spring
Brookty5 小时前
【MySQL】JDBC编程
java·数据库·后端·学习·mysql·jdbc
UQI-LIUWJ5 小时前
计算机组成笔记:缓存替换算法
笔记·缓存