《OpenCV计算机视觉》—— 用于执行图像透视变换的两个关键函数

文章目录

cv2.getPerspectiveTransformcv2.warpPerspective 是 OpenCV 库中用于执行透视变换的两个关键函数。下面是对这两个函数的详细解释:

cv2.getPerspectiveTransform

功能:计算从源图像到目标图像的透视变换矩阵。

参数

  • src:源图像中的四个点的坐标,通常是一个形状为 (4, 2) 的 NumPy 数组,其中每行代表一个点的 (x, y) 坐标。
  • dst:目标图像中的四个对应点的坐标,格式与 src 相同。

返回值 :返回一个形状为 (3, 3) 的透视变换矩阵 M

使用

python 复制代码
import cv2
import numpy as np

# 源图像中的四个点(通常选择图像的四个角)
src_points = np.array([[x1, y1], [x2, y2], [x3, y3], [x4, y4]], dtype="float32")

# 目标图像中的四个对应点(定义变换后的图像形状)
dst_points = np.array([[X1, Y1], [X2, Y2], [X3, Y3], [X4, Y4]], dtype="float32")

# 计算透视变换矩阵
M = cv2.getPerspectiveTransform(src_points, dst_points)

cv2.warpPerspective

功能:应用透视变换矩阵将源图像变换到目标图像。

参数

  • src:源图像。
  • M:由 cv2.getPerspectiveTransform 计算得到的透视变换矩阵。
  • dsize:输出图像的尺寸 (width, height)

可选参数

  • flagsborderMode:用于指定插值方法和边界像素的外推方法,但通常使用默认值即可。
  • borderValue:边界颜色值,当 borderMode 不为 cv2.BORDER_CONSTANT 时可以忽略。

返回值:返回变换后的图像。

使用

python 复制代码
# 输出图像的尺寸
dsize = (width, height)

# 应用透视变换
warped_image = cv2.warpPerspective(src, M, dsize)

注意事项

  1. 在选择源图像和目标图像中的四个点时,请确保它们是图像中的显著特征点,并且它们在源图像和目标图像中的相对位置保持一致。
  2. 透视变换可能会改变图像的宽高比和形状,因此需要根据实际需求调整输出图像的尺寸。
  3. 透视变换是一种非线性变换,可能会引入一些失真或扭曲效果。如果希望保持图像的某些特征不变(如直线保持直线),可能需要考虑其他类型的变换(如仿射变换)。

通过结合使用 cv2.getPerspectiveTransformcv2.warpPerspective,可以实现图像的透视校正、形状变换等效果,在图像处理和计算机视觉领域具有广泛的应用。

相关推荐
边缘计算社区33 分钟前
FPGA与边缘AI:计算革命的前沿力量
人工智能·fpga开发
飞哥数智坊41 分钟前
打工人周末充电:15条AI资讯助你领先一小步
人工智能
Tech Synapse44 分钟前
基于CARLA与PyTorch的自动驾驶仿真系统全栈开发指南
人工智能·opencv·sqlite
layneyao44 分钟前
深度强化学习(DRL)实战:从AlphaGo到自动驾驶
人工智能·机器学习·自动驾驶
海特伟业2 小时前
隧道调频广播覆盖的实现路径:隧道无线广播技术赋能行车安全升级,隧道汽车广播收音系统助力隧道安全管理升级
人工智能
CareyWYR2 小时前
每周AI论文速递(250421-250425)
人工智能
追逐☞2 小时前
机器学习(10)——神经网络
人工智能·神经网络·机器学习
winner88812 小时前
对抗学习:机器学习里的 “零和博弈”,如何实现 “双赢”?
人工智能·机器学习·gan·对抗学习
Elastic 中国社区官方博客2 小时前
使用 LangGraph 和 Elasticsearch 构建强大的 RAG 工作流
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
娃娃略2 小时前
【AI模型学习】双流网络——更强大的网络设计
网络·人工智能·pytorch·python·神经网络·学习