python——pyecharts数据可视化堆叠面积图

堆叠面积图具有以下几个重要作用:

一、展示总量与分量关系

堆叠面积图可以清晰地展示多个数据系列的总量以及各个分量在总量中所占的比例。通过不同颜色或阴影的区域,你可以直观地看出每个数据系列对整体的贡献程度。例如,在分析公司不同业务部门的销售额时,堆叠面积图能够显示出总销售额以及各部门销售额的变化情况,帮助管理层了解各个部门对公司整体业绩的影响。

二、比较不同系列的趋势

它可以同时呈现多个数据系列随时间或其他变量的变化趋势。通过观察不同区域的起伏和变化速度,你能够比较不同数据系列的增长、下降或波动情况。比如,在研究不同产品类别的市场份额随时间的变化时,堆叠面积图可以让你快速了解各个产品类别的发展态势以及它们之间的相对竞争关系。

三、突出数据的变化幅度

堆叠面积图能够突出显示数据的变化幅度。当某个数据系列的数值发生较大变化时,其对应的区域面积也会相应地增大或缩小,从而引起人们的关注。这对于发现数据中的异常值、重要事件或趋势转折非常有帮助。例如,在监测环境指标变化时,若某一时期某种污染物的排放量突然增加,在堆叠面积图中会明显地表现为该部分区域的扩大,提醒人们及时采取措施。

四、可视化复杂数据结构

对于具有复杂数据结构的情况,堆叠面积图可以有效地将多个维度的数据整合在一起进行展示。比如,同时考虑不同地区、不同时间段和不同产品类型的销售数据,通过合理设置坐标轴和数据系列,可以在一张堆叠面积图中呈现出丰富的信息,便于进行综合分析和决策。

数据集

复制代码
vote_result.csv

Areas_of_interest,Votes
金融,172
医疗保健,136
市场业,135
零售业,101
制造业,80
司法,68
工程与科学,50
保险业,29
其他,41

us_population_by_age.csv

复制代码
year,year_under5,year5_19,year20_44,year45_64,year65above
1860年,15.4,35.8,35.7,10.4,2.7
1870年,14.3,35.4,35.4,11.9,3
1880年,13.8,34.3,35.9,12.6,3.4
1890年,12.2,33.9,36.9,13.1,3.9
1900年,12.1,32.3,37.7,13.7,4.1
1910年,11.6,30.4,39,14.6,4.3
1920年,10.9,29.8,38.4,16.1,4.7
1930年,9.3,29.5,38.3,17.4,5.4
1940年,8,26.4,38.9,19.8,6.8
1950年,10.7,23.2,37.6,20.3,8.1
1960年,11.3,27.1,32.2,20.1,9.2
1970年,8.4,29.5,31.7,20.6,9.8
1980年,7.2,24.8,37.1,19.6,11.3
1990年,7.6,21.3,40.1,18.6,12.5
2000年,6.8,21.8,37,22,12.4
2005年,6.8,20.7,35.4,24.6,12.4

presidential_approval_rate.csv

复制代码
political_issue,support,oppose,no_opinion
种族问题,52,38,10
教育,49,40,11
恐怖活动,48,45,7
能源政策,47,42,11
外交事务,44,48,8
环境,43,51,6
宗教政策,41,53,6
税收,41,54,5
医疗保健政策,40,57,3
经济,38,59,3
就业政策,36,57,7
贸易政策,31,64,5
外来移民,29,62,9
python 复制代码
import pyecharts.options as opts
from pyecharts.charts import Line
from pyecharts import options as opts
from pyecharts.charts import Grid
from pyecharts.commons.utils import JsCode
from pyecharts.faker import Faker
from pyecharts.globals import ThemeType

# 原始数据
x_data = ["种族问题","教育", "恐怖活动", "能源政策", "外交事务", "环境", "宗教政策", "税收", "医疗保健政策","经济" ,"就业政策", "贸易政策","外来移民"]
y_data = [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,100]
support_data = [52, 49, 48, 47, 44, 43, 41,41,40,38,36,31,28]
oppose_data = [38, 40, 45, 42, 48, 51, 53,54,57,59,57,64,62]
no_opinion_data = [10, 11, 7, 11, 8, 6, 6,5,3,3,7,5,9]

def create_line_chart(selected_indices):
    selected_x_data = [x_data[i] for i in selected_indices]
    selected_support_data = [support_data[i] for i in selected_indices]
    selected_oppose_data = [oppose_data[i] for i in selected_indices]
    selected_no_opinion_data = [no_opinion_data[i] for i in selected_indices]

    line = (
        Line()
      .add_xaxis(xaxis_data=selected_x_data)
      .add_yaxis(
            series_name="support",
            stack="总量",
            y_axis=selected_support_data,
            areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
      .add_yaxis(
            series_name="oppose",
            stack="总量",
            y_axis=selected_oppose_data,
            areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
      .add_yaxis(
            series_name="no_opinion",
            stack="总量",
            y_axis=selected_no_opinion_data,
            areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
            label_opts=opts.LabelOpts(is_show=False),
        )
      .add_yaxis(
            series_name="total",
            stack="总量",
            y_axis=[100] * len(selected_indices),
            areastyle_opts=opts.AreaStyleOpts(opacity=0.5),
            label_opts=opts.LabelOpts(is_show=True, position="top"),
        )
      .set_global_opts(
            title_opts=opts.TitleOpts(title="堆叠区域图"),
            tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="cross"),
            yaxis_opts=opts.AxisOpts(
                type_="value",
                axistick_opts=opts.AxisTickOpts(is_show=True),
                splitline_opts=opts.SplitLineOpts(is_show=True),
            ),
            xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False, axislabel_opts=opts.LabelOpts(rotate=45))
        )
    )
    return line

def create_grid_chart(selected_indices):
    line_chart = create_line_chart(selected_indices)
    grid = (
        Grid()
      .add(line_chart, grid_opts=opts.GridOpts(pos_left="10%")))
    return grid

# 默认全选
selected_indices = list(range(len(x_data)))
grid_chart = create_grid_chart(selected_indices)
grid_chart.render("stacked_area_chart_with_dynamic_component.html")
python 复制代码
from pyecharts.charts import Bar
from pyecharts import options as opts
from pyecharts.globals import ThemeType
import pandas as pd
data=pd.read_csv("./presidential_approval_rate.csv")
print(data)
datax = data["political_issue"].tolist()
print(data)
dataA = data["support"].tolist()
dataB = data["oppose"].tolist()
dataC = data["no_opinion"].tolist()
stackBarDiagram = (
    Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
    .add_xaxis(xaxis_data=datax)
    .add_yaxis(
        series_name="支持",
        y_axis=dataA,
        stack=True
    )
    .add_yaxis(
        series_name="反对",
        y_axis=dataB,
        stack=True
    )
    .add_yaxis(
        series_name="不发表意见",
        y_axis=dataC,
        stack=True,

    )
    .set_series_opts(
      label_opts=opts.LabelOpts(
          position="inside",
          is_show=False
      )
    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title="柱状图数据堆叠示例",
                                  subtitle="数据科学与大数据21",
                                  pos_left="center"
                                  ),
        xaxis_opts=opts.AxisOpts(
            axislabel_opts=opts.LabelOpts(rotate=50),
            name="political_issue"
        ),
        toolbox_opts=opts.TooltipOpts(is_show=True),
        legend_opts=opts.LegendOpts(
            type_="scroll",
            orient="vertical",
            pos_left="90%",
            pos_top='20%'
        ),
    )
)
stackBarDiagram.render(path="堆叠柱形图.html")
python 复制代码
from pyecharts.charts import Pie
import pandas as pd
import numpy as np
import pyecharts.options as opts
from pyecharts.globals import ThemeType
vote_result = pd.read_csv('vote_result.csv')

pie = (
    Pie(init_opts=opts.InitOpts(theme=ThemeType.DARK))
    .add(
        series_name="饼图绘制",
        data_pair=vote_result.values,
        label_opts=opts.LabelOpts(position = "outside",formatter='{d}%'),
        center=["60%","60%"]

    )
    .set_global_opts(
        title_opts=opts.TitleOpts(title='饼图示例',
        subtitle='以下是读者的投票结果。读者对金融、医疗保健、市场业3个领域最感兴趣。',
        pos_right='50%'),
        #  图例配置项
        legend_opts=opts.LegendOpts(
            type_='scroll',
            pos_top='20%',
            pos_right= '80%',
            orient='vertical',
            is_show=True

            )
    )
)
pie.options["bgColor"] = "white"
pie.render('pie.html',bg_color='white')
相关推荐
深空数字孪生1 小时前
AI+可视化:数据呈现的未来形态
人工智能·信息可视化
zeroporn2 小时前
在Mac M1/M2上使用Hugging Face Transformers进行中文文本分类(完整指南)
macos·分类·数据挖掘·nlp·transformer·预训练模型·文本分类
qfZYG3 小时前
根据数值范围动态调整标签(Label)的颜色
信息可视化
Narutolxy8 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
Ai尚研修-贾莲11 小时前
Python语言在地球科学交叉领域中的应用——从数据可视化到常见数据分析方法的使用【实例操作】
python·信息可视化·数据分析·地球科学
lilye6612 小时前
精益数据分析(53/126):双边市场模式指标全解析与运营策略深度探讨
数据挖掘·数据分析
ykjhr_3d13 小时前
数据可视化与数据编辑器:直观呈现数据价值
信息可视化·编辑器
ʚɞ 短腿欧尼13 小时前
文本数据可视化
信息可视化·数据分析
BioRunYiXue13 小时前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
Blossom.11816 小时前
低代码开发:开启软件开发的新篇章
人工智能·深度学习·安全·低代码·机器学习·计算机视觉·数据挖掘