使用OpenCV实现基于FisherFaces的人脸识别

引言

随着人工智能技术的发展,人脸识别已经成为日常生活中不可或缺的一部分。在众多的人脸识别算法中,FisherFaces 方法因其简单易用且具有良好的识别效果而备受青睐。本文将详细介绍如何使用Python和OpenCV库实现基于FisherFaces的人脸识别系统,并通过一个实际例子来展示其使用方法。

环境准备

在开始之前,请确保已经安装了opencv-pythonnumpy库。如果还未安装,可以使用pip命令进行安装:

python 复制代码
pip install opencv-python numpy

代码实现

下面是一个简单的使用FisherFaces方法进行人脸识别的例子。我们将从几个训练图像中提取特征,并利用这些特征来识别一个新的图像。

读取训练图像

首先定义一个辅助函数来读取图像,并将其调整到统一的大小:

python 复制代码
import cv2
import numpy as np

def image_re(image_path):
    img = cv2.imread(image_path, 0)  # 以灰度模式读取图像
    img = cv2.resize(img, (120, 180))  # 调整图像大小
    return img

# 使用函数读取训练图像
images = []
images.append(image_re('data\\hg1.png'))
images.append(image_re('data\\hg2.png'))
images.append(image_re('data\\pyy1.png'))
images.append(image_re('data\\pyy2.png'))

labels = [0, 0, 1, 1]  # 分别对应两个不同的人

训练数据(自备)

初始化预测图像

python 复制代码
pre_image = image_re('data\\hg.png')  # 读取待识别图像

预测数据(自备)

创建并训练FisherFaces识别器

python 复制代码
# 创建FisherFaces人脸识别器
recognizer = cv2.face.FisherFaceRecognizer_create()

# 使用训练数据(images和labels)来训练识别器
recognizer.train(images, np.array(labels))

进行人脸识别预测

python 复制代码
# 对预测图像(pre_image)进行人脸识别预测
label, confidence = recognizer.predict(pre_image)

dic = {0: 'hg', 1: 'pyy'}
print('这人是:', dic[label])
print('置信度为:', confidence)

显示结果

python 复制代码
# 使用OpenCV在图像上标注识别结果
annotated_img = cv2.putText(cv2.imread('data\\hg.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('xx', annotated_img)
cv2.waitKey(0)

输出结果

代码解析

  1. 读取训练图像 :定义了一个辅助函数image_re,它接受一个图像路径作为参数,读取图像并调整其大小。
  2. 初始化预测图像 :同样使用image_re函数读取预测图像。
  3. 创建识别器 :使用cv2.face.FisherFaceRecognizer_create()创建一个FisherFaces人脸识别器对象。
  4. 训练识别器 :通过调用recognizer.train()方法,并传入训练图像和对应的标签来训练识别器。
  5. 预测:利用训练好的识别器对预测图像进行分类,并得到预测结果和置信度。
  6. 结果显示:在预测图像上标注识别结果,并显示图像。

总结

通过上述代码,我们实现了基于FisherFaces的人脸识别。FisherFaces方法是基于线性判别分析(Linear Discriminant Analysis, LDA)的一种人脸识别技术,它通过最大化类别间的距离来增强特征的区分能力。虽然在处理复杂背景或非理想条件下可能不如深度学习模型那样表现优异,但对于初学者来说,它依然是理解人脸识别原理的一个很好的起点。

希望这篇博客能够帮助你入门人脸识别技术,并激发你探索更多复杂算法的兴趣。随着技术的进步,还有更多的方法等待着我们去发现和应用。

相关推荐
无心水几秒前
【任务调度:数据库锁 + 线程池实战】2、MySQL 8.0+ vs PostgreSQL:SKIP LOCKED 终极对决,谁才是分布式调度的王者?
java·人工智能·后端·面试·架构
简佐义的博客几秒前
120万细胞大整合(自测+公共数据):scRNA-seq 构建乳腺细胞图谱的完整思路(附生信复现资源)
人工智能·深度学习·算法·机器学习
wanghao6664552 分钟前
向量相似度计算全解析
人工智能·机器学习
hqyjzsb3 分钟前
企业采购AI培训服务的供应商评估体系与选型方案
人工智能·职场和发展·创业创新·学习方法·业界资讯·改行学it·高考
Eloudy6 分钟前
CHI 开发备忘 02 记 -- CHI spec 02 事务
人工智能·ai·arch·hpc
呆萌很7 分钟前
上采样与下采样区别
人工智能
信创天地8 分钟前
国产化分布式服务框架双雄:Dubbo与Spring Cloud Alibaba 服务调用解决方案全解析
人工智能·系统架构·开源·dubbo·运维开发·risc-v
RFG201210 分钟前
18、Dubbo实例注入:简化微服务架构中的依赖管理【面向初学者】
人工智能·后端·微服务·云原生·架构·tomcat·dubbo
TImCheng060913 分钟前
在职AI学习的专业方案:不脱产学习方式的对比与适配选型
人工智能
byzh_rc15 分钟前
[深度学习网络从入门到入土] 残差网络ResNet
网络·人工智能·深度学习