使用OpenCV实现基于FisherFaces的人脸识别

引言

随着人工智能技术的发展,人脸识别已经成为日常生活中不可或缺的一部分。在众多的人脸识别算法中,FisherFaces 方法因其简单易用且具有良好的识别效果而备受青睐。本文将详细介绍如何使用Python和OpenCV库实现基于FisherFaces的人脸识别系统,并通过一个实际例子来展示其使用方法。

环境准备

在开始之前,请确保已经安装了opencv-pythonnumpy库。如果还未安装,可以使用pip命令进行安装:

python 复制代码
pip install opencv-python numpy

代码实现

下面是一个简单的使用FisherFaces方法进行人脸识别的例子。我们将从几个训练图像中提取特征,并利用这些特征来识别一个新的图像。

读取训练图像

首先定义一个辅助函数来读取图像,并将其调整到统一的大小:

python 复制代码
import cv2
import numpy as np

def image_re(image_path):
    img = cv2.imread(image_path, 0)  # 以灰度模式读取图像
    img = cv2.resize(img, (120, 180))  # 调整图像大小
    return img

# 使用函数读取训练图像
images = []
images.append(image_re('data\\hg1.png'))
images.append(image_re('data\\hg2.png'))
images.append(image_re('data\\pyy1.png'))
images.append(image_re('data\\pyy2.png'))

labels = [0, 0, 1, 1]  # 分别对应两个不同的人

训练数据(自备)

初始化预测图像

python 复制代码
pre_image = image_re('data\\hg.png')  # 读取待识别图像

预测数据(自备)

创建并训练FisherFaces识别器

python 复制代码
# 创建FisherFaces人脸识别器
recognizer = cv2.face.FisherFaceRecognizer_create()

# 使用训练数据(images和labels)来训练识别器
recognizer.train(images, np.array(labels))

进行人脸识别预测

python 复制代码
# 对预测图像(pre_image)进行人脸识别预测
label, confidence = recognizer.predict(pre_image)

dic = {0: 'hg', 1: 'pyy'}
print('这人是:', dic[label])
print('置信度为:', confidence)

显示结果

python 复制代码
# 使用OpenCV在图像上标注识别结果
annotated_img = cv2.putText(cv2.imread('data\\hg.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('xx', annotated_img)
cv2.waitKey(0)

输出结果

代码解析

  1. 读取训练图像 :定义了一个辅助函数image_re,它接受一个图像路径作为参数,读取图像并调整其大小。
  2. 初始化预测图像 :同样使用image_re函数读取预测图像。
  3. 创建识别器 :使用cv2.face.FisherFaceRecognizer_create()创建一个FisherFaces人脸识别器对象。
  4. 训练识别器 :通过调用recognizer.train()方法,并传入训练图像和对应的标签来训练识别器。
  5. 预测:利用训练好的识别器对预测图像进行分类,并得到预测结果和置信度。
  6. 结果显示:在预测图像上标注识别结果,并显示图像。

总结

通过上述代码,我们实现了基于FisherFaces的人脸识别。FisherFaces方法是基于线性判别分析(Linear Discriminant Analysis, LDA)的一种人脸识别技术,它通过最大化类别间的距离来增强特征的区分能力。虽然在处理复杂背景或非理想条件下可能不如深度学习模型那样表现优异,但对于初学者来说,它依然是理解人脸识别原理的一个很好的起点。

希望这篇博客能够帮助你入门人脸识别技术,并激发你探索更多复杂算法的兴趣。随着技术的进步,还有更多的方法等待着我们去发现和应用。

相关推荐
咕噜企业分发小米8 分钟前
阿里云和华为云在AI教育领域的生态重构具体会带来哪些影响?
人工智能·阿里云·华为云
劈星斩月9 分钟前
OpenCV 学习11 读取和写入视频文件
opencv·读取视频·写入视频
Coder_Boy_11 分钟前
基于SpringAI的智能推荐影视平台设计和业务思路
大数据·人工智能·spring boot·spring cloud·langchain
AI生成未来11 分钟前
复刻“黑客帝国”子弹时间!SpaceTimePilot:视频变可操控4D游戏,倒放/变速/运镜随你掌控
人工智能·aigc·扩散模型·视频生成
福客AI智能客服11 分钟前
客服系统AI:数字文创电商的权属安全保障与体验升级核心
大数据·人工智能
melonbo19 分钟前
自动驾驶场景下的图像预处理
人工智能·机器学习·自动驾驶
智慧化智能化数字化方案27 分钟前
【精品资料鉴赏】财务数智化智能化建设学习
人工智能·学习·财务数字化·财务数智化·财务一体化·财务共享平台·财务成熟度评估模型
柠檬071127 分钟前
opencv 未知函数记录-edgePreservingFilter
人工智能·opencv·计算机视觉
小霖家的混江龙28 分钟前
不再费脑, 手算 Attention 公式, 理解 Transformer 注意力的数学本质
人工智能·llm·aigc
小北方城市网28 分钟前
GEO 元宇宙协同与自主进化治理实战:构建全域自治的智能地理生态
大数据·人工智能·microsoft·知识图谱·数据库架构·geo