使用OpenCV实现基于FisherFaces的人脸识别

引言

随着人工智能技术的发展,人脸识别已经成为日常生活中不可或缺的一部分。在众多的人脸识别算法中,FisherFaces 方法因其简单易用且具有良好的识别效果而备受青睐。本文将详细介绍如何使用Python和OpenCV库实现基于FisherFaces的人脸识别系统,并通过一个实际例子来展示其使用方法。

环境准备

在开始之前,请确保已经安装了opencv-pythonnumpy库。如果还未安装,可以使用pip命令进行安装:

python 复制代码
pip install opencv-python numpy

代码实现

下面是一个简单的使用FisherFaces方法进行人脸识别的例子。我们将从几个训练图像中提取特征,并利用这些特征来识别一个新的图像。

读取训练图像

首先定义一个辅助函数来读取图像,并将其调整到统一的大小:

python 复制代码
import cv2
import numpy as np

def image_re(image_path):
    img = cv2.imread(image_path, 0)  # 以灰度模式读取图像
    img = cv2.resize(img, (120, 180))  # 调整图像大小
    return img

# 使用函数读取训练图像
images = []
images.append(image_re('data\\hg1.png'))
images.append(image_re('data\\hg2.png'))
images.append(image_re('data\\pyy1.png'))
images.append(image_re('data\\pyy2.png'))

labels = [0, 0, 1, 1]  # 分别对应两个不同的人

训练数据(自备)

初始化预测图像

python 复制代码
pre_image = image_re('data\\hg.png')  # 读取待识别图像

预测数据(自备)

创建并训练FisherFaces识别器

python 复制代码
# 创建FisherFaces人脸识别器
recognizer = cv2.face.FisherFaceRecognizer_create()

# 使用训练数据(images和labels)来训练识别器
recognizer.train(images, np.array(labels))

进行人脸识别预测

python 复制代码
# 对预测图像(pre_image)进行人脸识别预测
label, confidence = recognizer.predict(pre_image)

dic = {0: 'hg', 1: 'pyy'}
print('这人是:', dic[label])
print('置信度为:', confidence)

显示结果

python 复制代码
# 使用OpenCV在图像上标注识别结果
annotated_img = cv2.putText(cv2.imread('data\\hg.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('xx', annotated_img)
cv2.waitKey(0)

输出结果

代码解析

  1. 读取训练图像 :定义了一个辅助函数image_re,它接受一个图像路径作为参数,读取图像并调整其大小。
  2. 初始化预测图像 :同样使用image_re函数读取预测图像。
  3. 创建识别器 :使用cv2.face.FisherFaceRecognizer_create()创建一个FisherFaces人脸识别器对象。
  4. 训练识别器 :通过调用recognizer.train()方法,并传入训练图像和对应的标签来训练识别器。
  5. 预测:利用训练好的识别器对预测图像进行分类,并得到预测结果和置信度。
  6. 结果显示:在预测图像上标注识别结果,并显示图像。

总结

通过上述代码,我们实现了基于FisherFaces的人脸识别。FisherFaces方法是基于线性判别分析(Linear Discriminant Analysis, LDA)的一种人脸识别技术,它通过最大化类别间的距离来增强特征的区分能力。虽然在处理复杂背景或非理想条件下可能不如深度学习模型那样表现优异,但对于初学者来说,它依然是理解人脸识别原理的一个很好的起点。

希望这篇博客能够帮助你入门人脸识别技术,并激发你探索更多复杂算法的兴趣。随着技术的进步,还有更多的方法等待着我们去发现和应用。

相关推荐
人工智能训练师33 分钟前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
cxr8282 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体
研梦非凡2 小时前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
幂简集成3 小时前
Realtime API 语音代理端到端接入全流程教程(含 Demo,延迟 280ms)
人工智能·个人开发
龙腾-虎跃3 小时前
FreeSWITCH FunASR语音识别模块
人工智能·语音识别·xcode
智慧地球(AI·Earth)3 小时前
给AI配一台手机+电脑?智谱AutoGLM上线!
人工智能·智能手机·电脑
Godspeed Zhao3 小时前
自动驾驶中的传感器技术46——Radar(7)
人工智能·机器学习·自动驾驶
limengshi1383923 小时前
机器学习面试:请介绍几种常用的学习率衰减方式
人工智能·学习·机器学习
AKAMAI3 小时前
Sport Network 凭借 Akamai 实现卓越成就
人工智能·云原生·云计算
周末程序猿4 小时前
机器学习|大模型为什么会出现"幻觉"?
人工智能