解决低版本pytorch和onnx组合时torch.atan2()不被onnx支持的问题

解决这个问题,最简单的当然是升级pytorch和onnx到比较高的版本,例如有人验证过的组合: pytorch=2.1.1+cu118, onnxruntime=1.16.3

但是因为你的模型或cuda环境等约束,不能安装这么高的版本的pytorch和onnx组合时(例如我的环境是pytorch1.12,onnxruntime=1.19.2,即使onnxruntime版本比较高但是Pytorch的版本底也照样报这个错: tan2 to ONNX opset version 16 is not supported),那就只能考虑自己基于torch.atan()实现torch.atan2()的功能了。

torch.atan()因为不能区分坐标落在哪个像限,如果直接用来计算物体的朝向角的话,因为可能这个缺陷导致计算出来的物体的朝向是完全相反的方向,或者朝向沿着x轴做对称翻转了,例如

torch.atan(-1/10)和torch.atan(1/(-10))是没有区别的,atan2()就是为了解决这种问题的,atan2()的实现原理大致如下图所示:

有人基于atan()对atan2()做了如下近似实现:

复制代码
torch.atan((rot_sine / (rot_cosine + 1e-8)).sigmoid())                
+ ((1 - torch.sign(rot_cosine)) / 2) * torch.sign(rot_sine) * torch.pi

显然后半部分根据x和y的正负做加/减torch.pi是正确的,但是前半部分对(y/x)做sigmoid()运算把值一律转到不带符号的(0,1)之间在有的情况下是有一定误差的。

网上没找到其他更好的实现,于是我基于上面图中的计算规则做了如下实现:

复制代码
            rot_sine = bboxes[..., 6:7]
            rot_cosine = bboxes[..., 7:8]
           
            idx = torch.where(rot_cosine == 0)
            rot_cosine[idx] = 1e-6

            rot = torch.atan(rot_sine / rot_cosine)

            mask_yp = (rot_sine >= 0) & (rot_cosine < 0)
            mask_yn = (rot_sine < 0) & (rot_cosine < 0)
            idx_yp = torch.where(mask_yp)
            idx_yn = torch.where(mask_yn)
            rot[idx_yp] += torch.pi
            rot[idx_yn] -= torch.pi

用数据测试发现上述计算步骤计算出的结果和torch.atan2()计算出来是一致的,仅当x==0(或者说上面的rot_cosine==0)时,用小量1e-6代替0,计算出的角度和正负torch.pi/2可能有点很细微差异而已,这基本不影响物体朝向的正确性。

将上述实现封装成函数替代调用处的torch.atan2(),导出onnx就可以顺利成功了。

相关推荐
听风吹等浪起2 小时前
NLP实战(4):使用PyTorch构建LSTM模型预测糖尿病
人工智能·pytorch·自然语言处理·lstm
三道杠卷胡3 小时前
【AI News | 20250424】每日AI进展
人工智能·pytorch·python·语言模型·github
AI视觉网奇4 小时前
四元数转旋转矩阵
人工智能·pytorch·python
2301_769624406 小时前
基于Pytorch的深度学习-第二章
人工智能·pytorch·深度学习
蹦蹦跳跳真可爱58910 小时前
Python----深度学习(基于深度学习Pytroch线性回归和曲线回归)
pytorch·python·深度学习·神经网络·回归·线性回归
COOCC114 小时前
PyTorch 实战:Transformer 模型搭建全解析
人工智能·pytorch·python·深度学习·神经网络·目标检测·transformer
annus mirabilis1 天前
PyTorch 入门指南:从核心概念到基础实战
人工智能·pytorch·python
黎明沐白1 天前
PyTorch源码编译报错“fatal error: numpy/arrayobject.h: No such file or directory”
人工智能·pytorch·numpy
进取星辰1 天前
PyTorch 深度学习实战(39):归一化技术对比(BN/LN/IN/GN)
人工智能·pytorch·深度学习
蹦蹦跳跳真可爱5891 天前
Python----深度学习(神经网络的过拟合解决方案)
pytorch·python·深度学习·神经网络