文章目录
- 一、无穷限反常积分的审敛法
- 二、无界函数的反常积分审敛法
- [三、 Γ \Gamma Γ 函数](#三、 Γ \Gamma Γ 函数)
一、无穷限反常积分的审敛法
定理1 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+∞) 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0.若函数
F ( x ) = ∫ a x f ( t ) d t F(x) = \int_a^x f(t) \mathrm{d}t F(x)=∫axf(t)dt
在 [ a , + ∞ ) [a, +\infty) [a,+∞) 上有上界,则反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx 收敛。
定理2(比较审敛原理) 设函数 f ( x ) f(x) f(x), g ( x ) \mathrm{g}(x) g(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+∞) 上连续。如果 0 ⩽ f ( x ) ⩽ g ( x ) ( a ⩽ x < + ∞ ) 0 \leqslant f(x) \leqslant \mathrm{g}(x)(a \leqslant x < +\infty) 0⩽f(x)⩽g(x)(a⩽x<+∞) 并且 ∫ a + ∞ g ( x ) d x \displaystyle \int_a^{+\infty} \mathrm{g}(x) \mathrm{d}x ∫a+∞g(x)dx 收敛,那么 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx 也收敛;如果 0 ⩽ g ( x ) ⩽ f ( x ) ( a ⩽ x < + ∞ ) 0 \leqslant \mathrm{g}(x) \leqslant f(x)(a \leqslant x < +\infty) 0⩽g(x)⩽f(x)(a⩽x<+∞) ,并且 ∫ a + ∞ g ( x ) d x \displaystyle \int_a^{+\infty} \mathrm{g}(x) \mathrm{d}x ∫a+∞g(x)dx 发散,那么 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx 也发散。
定理3(比较审敛法1) 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) ( a > 0 ) [a, +\infty) (a > 0) [a,+∞)(a>0) 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0 .如果存在常数 M > 0 M > 0 M>0 及 p > 1 p > 1 p>1 ,使得 f ( x ) ⩽ M x p ( a ⩽ x < + ∞ ) f(x) \leqslant \cfrac{M}{x^p}(a \leqslant x < +\infty) f(x)⩽xpM(a⩽x<+∞) ,那么反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x)\mathrm{d}x ∫a+∞f(x)dx 收敛;如果存在常数 N > 0 N > 0 N>0 使得 f ( x ) ⩾ N x ( a ⩽ x < + ∞ ) f(x) \geqslant \cfrac{N}{x}(a \leqslant x < +\infty) f(x)⩾xN(a⩽x<+∞),那么反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x)\mathrm{d}x ∫a+∞f(x)dx 发散。
定理4(极限审敛法1) 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+∞) 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0 。如果存在常数 p > 1 p > 1 p>1 ,使得 lim x → + ∞ x p f ( x ) = c < + ∞ \lim\limits_{x \to +\infty} x^p f(x) = c < +\infty x→+∞limxpf(x)=c<+∞,那么反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x)\mathrm{d}x ∫a+∞f(x)dx 收敛;如果 lim x → + ∞ x f ( x ) = d > 0 \lim\limits_{x \to +\infty} x f(x) = d > 0 x→+∞limxf(x)=d>0 (或 lim x → + ∞ x f ( x ) = + ∞ \lim\limits_{x \to +\infty} x f(x) = +\infty x→+∞limxf(x)=+∞),那么反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x)\mathrm{d}x ∫a+∞f(x)dx 发散。
定理5 设函数 f ( x ) f(x) f(x) 在区间 [ a , + ∞ ) [a, +\infty) [a,+∞) 上连续。如果反常积分
∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty} |f(x)| \mathrm{d}x ∫a+∞∣f(x)∣dx
收敛,那么反常积分
∫ a + ∞ f ( x ) d x \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx
也收敛。
通常称满足定理5 条件的反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx 绝对收敛 。定理5可简单的表述为:绝对收敛的反常积分 ∫ a + ∞ f ( x ) d x \displaystyle \int_a^{+\infty} f(x) \mathrm{d}x ∫a+∞f(x)dx 必定收敛。
二、无界函数的反常积分审敛法
定理6(比较审敛法2) 设函数 f ( x ) f(x) f(x) 在区间 ( a , b ] (a, b] (a,b] 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0 , x = a x = a x=a 为 f ( x ) f(x) f(x) 的瑕点。如果存在常数 M > 0 M > 0 M>0 及 q < 1 q < 1 q<1,使得
f ( x ) ⩽ M ( x − a ) q ( a < x ⩽ b ) , f(x) \leqslant \cfrac{M}{(x - a)^q} \quad (a < x \leqslant b), f(x)⩽(x−a)qM(a<x⩽b),
那么反常积分 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x ∫abf(x)dx 收敛;如果存在常数 N > 0 N > 0 N>0 ,使得
f ( x ) ⩾ N x − a ( a < x ⩽ b ) , f(x) \geqslant \cfrac{N}{x - a} \quad (a < x \leqslant b), f(x)⩾x−aN(a<x⩽b),
那么反常积分 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x ∫abf(x)dx 发散。
定理7(极限审敛法2) 设函数 f ( x ) f(x) f(x) 在区间 ( a , b ] (a, b] (a,b] 上连续,且 f ( x ) ⩾ 0 f(x) \geqslant 0 f(x)⩾0 , x = a x = a x=a 为 f ( x ) f(x) f(x) 的瑕点。如果存在常数 0 < q < 1 0 < q < 1 0<q<1,使得
lim x → a + ( x − a ) q f ( x ) \lim_{x \to a^+} (x - a)^q f(x) x→a+lim(x−a)qf(x)
存在,那么反常积分 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x ∫abf(x)dx 收敛;如果
lim x → a + ( x − a ) f ( x ) = d > 0 ( 或 lim x → a + ( x − a ) f ( x ) = + ∞ ) , \lim_{x \to a^+} (x - a) f(x) = d > 0 \quad (或 \lim_{x \to a^+} (x - a) f(x) = +\infty), x→a+lim(x−a)f(x)=d>0(或x→a+lim(x−a)f(x)=+∞),
那么反常积分 ∫ a b f ( x ) d x \displaystyle \int_a^b f(x) \mathrm{d}x ∫abf(x)dx 发散。
三、 Γ \Gamma Γ 函数
Γ \Gamma Γ 函数的定义如下:
Γ ( s ) = ∫ 0 + ∞ e − x x s − 1 d x ( s > 0 ) \Gamma (s) = \int_0^{+\infty} \mathrm{e}^{-x} x^{s - 1} \mathrm{d}x \quad (s > 0) Γ(s)=∫0+∞e−xxs−1dx(s>0)
Γ 函数 \Gamma 函数 Γ函数 的几个重要性质:
-
递推公式 Γ ( s + 1 ) = s Γ ( s ) ( s > 0 ) \Gamma (s + 1) = s \Gamma(s) \quad (s > 0) Γ(s+1)=sΓ(s)(s>0) ;
一般地,对任何正整数 n n n ,有
Γ ( n + 1 ) = n ! \Gamma(n + 1) = n! Γ(n+1)=n!所以我们可以把 Γ \Gamma Γ 函数看成是阶乘的推广。
-
当 s → 0 + s \to 0^+ s→0+ 时, Γ ( s ) → + ∞ \Gamma(s) \to +\infty Γ(s)→+∞
-
Γ ( s ) Γ ( 1 − s ) = π sin π s ( 0 < s < 1 ) \Gamma(s) \Gamma(1 - s) = \cfrac{\pi}{\sin{\pi s}} (0 < s < 1) Γ(s)Γ(1−s)=sinπsπ(0<s<1) .
这个公式称为余元公式。