【OpenCV】(七)—— 滤波

OpenCV 中的滤波操作用于去除图像噪声,实现图像的平滑处理,改善图像质量或提取有用的信息。使用一张有噪声的图像作为示例

均值滤波

均值滤波是一种简单的线性滤波技术,通过将像素点周围邻域内的所有像素值取平均来达到平滑图像的效果,可以用来减少噪声。opencv中均值滤波使用方法blur,其函数原型如下:

cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst

参数说明

  • src: 输入图像。
  • ksize: 滤波器窗口的大小,格式为 (宽度, 高度)。例如,(5, 5) 表示一个 5x5 的滤波器窗口。
  • dst: 输出图像。如果未指定,则默认与输入图像具有相同的类型和大小。
  • anchor: 锚点位置,默认为 (-1, -1),表示锚点位于滤波器窗口的中心。
  • borderType: 边界填充方式,默认为cv2.BORDER_DEFAULT。常见的边界填充方式有:
    • cv2.BORDER_CONSTANT: 用常数值填充边界。
    • cv2.BORDER_REFLECT: 用镜像反射的方式填充边界。
    • cv2.BORDER_REPLICATE: 用边界像素值重复填充边界。
    • cv2.BORDER_WRAP: 用环绕方式填充边界。
py 复制代码
# 均值滤波 类似于平均卷积
blur = cv2.blur(img,(3,3))
cv_show('blur',blur)

运行结果:

高斯滤波

高斯滤波也是一种平滑滤波器,但它使用的是高斯权重矩阵,这样可以使滤波效果更加自然,对边缘信息的保留也更好。相当于选取一个像素点,其周围像素距离越近权重越高。高斯滤波在opencv中使用方法gaussian实现,其函数原型如下:

cv2.GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst

参数说明

  • src: 输入图像。
  • ksize: 滤波器窗口的大小,格式为 (宽度, 高度)。例如,(5, 5) 表示一个 5x5 的滤波器窗口。
  • sigmaX: 高斯核在 X 方向上的标准差。如果设置为 0,OpenCV 会根据 ksize 自动计算。
  • dst: 输出图像。如果未指定,则默认与输入图像具有相同的类型和大小。
  • sigmaY: 高斯核在 Y 方向上的标准差。如果未指定,则默认等于 sigmaX
  • borderType: 边界填充方式,默认为cv2.BORDER_DEFAULT。常见的边界填充方式有:
    • cv2.BORDER_CONSTANT: 用常数值填充边界。
    • cv2.BORDER_REFLECT: 用镜像反射的方式填充边界。
    • cv2.BORDER_REPLICATE: 用边界像素值重复填充边界。
    • cv2.BORDER_WRAP: 用环绕方式填充边界。
py 复制代码
#高斯滤波,相当于在均值滤波的基础上添加了权重,离中心点越近,权重越高,1 为标准差
gaussian = cv2.GaussianBlur(img,(5,5),1)
cv_show('gaussian',gaussian)

中值滤波

中值滤波是非线性的滤波方法,主要用于去除椒盐噪声。它的工作原理是用邻域内所有像素值的中位数替换中心像素值。中值滤波在opencv中使用medianBlur方法,其函数原型如下:

cv2.medianBlur(src, ksize[, dst]) -> dst

参数说明

  • src: 输入图像。
  • ksize: 滤波器窗口的大小,必须是大于 1 的奇数。例如,5 表示一个 5x5 的滤波器窗口。
  • dst: 输出图像。如果未指定,则默认与输入图像具有相同的类型和大小。
py 复制代码
# 中值滤波,围绕中心点的数据中从大到小排序,取中值
median = cv2.medianBlur(img,5)
cv_show('median',median)

上述三种方法各有不同,让我们将这些结果放到一起进行对比观察一下,因为opencv所有的图像信息都是numpy数组,在此处使用numpy进行拼接展示

py 复制代码
# 对比展示所有图片
res = np.hstack((blur,gaussian,median))
cv_show("res",res)
相关推荐
ww180009 分钟前
多目标粒子群优化算法-MOPSO-(机器人路径规划/多目标信号处理(图像/音频))
人工智能·算法·分类·信号处理
liruiqiang0511 分钟前
线性模型 - Logistic 回归
人工智能·机器学习·数据挖掘·回归
zhengyawen66611 分钟前
深度学习之图像回归(一)
人工智能·数据挖掘·回归
Tianyanxiao17 分钟前
【探商宝】2025年2月科技与商业热点头条:AI竞赛、量子计算与芯片市场新格局
大数据·人工智能·经验分享·数据分析
qq_15321452641 小时前
Openai Dashboard可视化微调大语言模型
人工智能·语言模型·自然语言处理·chatgpt·nlp·gpt-3·transformer
FL16238631291 小时前
[C++]使用纯opencv部署yolov12目标检测onnx模型
c++·opencv·yolo
青松@FasterAI1 小时前
【Arxiv 大模型最新进展】PEAR: 零额外推理开销,提升RAG性能!(★AI最前线★)
人工智能
huoyingcg1 小时前
武汉火影数字|VR沉浸式空间制作 VR大空间打造
人工智能·科技·vr·虚拟现实·增强现实
冷冷清清中的风风火火1 小时前
本地部署DeepSeek的硬件配置建议
人工智能·ai
sauTCc2 小时前
RAG实现大致流程
人工智能·知识图谱