【OpenCV】(七)—— 滤波

OpenCV 中的滤波操作用于去除图像噪声,实现图像的平滑处理,改善图像质量或提取有用的信息。使用一张有噪声的图像作为示例

均值滤波

均值滤波是一种简单的线性滤波技术,通过将像素点周围邻域内的所有像素值取平均来达到平滑图像的效果,可以用来减少噪声。opencv中均值滤波使用方法blur,其函数原型如下:

cv2.blur(src, ksize[, dst[, anchor[, borderType]]]) -> dst

参数说明

  • src: 输入图像。
  • ksize: 滤波器窗口的大小,格式为 (宽度, 高度)。例如,(5, 5) 表示一个 5x5 的滤波器窗口。
  • dst: 输出图像。如果未指定,则默认与输入图像具有相同的类型和大小。
  • anchor: 锚点位置,默认为 (-1, -1),表示锚点位于滤波器窗口的中心。
  • borderType: 边界填充方式,默认为cv2.BORDER_DEFAULT。常见的边界填充方式有:
    • cv2.BORDER_CONSTANT: 用常数值填充边界。
    • cv2.BORDER_REFLECT: 用镜像反射的方式填充边界。
    • cv2.BORDER_REPLICATE: 用边界像素值重复填充边界。
    • cv2.BORDER_WRAP: 用环绕方式填充边界。
py 复制代码
# 均值滤波 类似于平均卷积
blur = cv2.blur(img,(3,3))
cv_show('blur',blur)

运行结果:

高斯滤波

高斯滤波也是一种平滑滤波器,但它使用的是高斯权重矩阵,这样可以使滤波效果更加自然,对边缘信息的保留也更好。相当于选取一个像素点,其周围像素距离越近权重越高。高斯滤波在opencv中使用方法gaussian实现,其函数原型如下:

cv2.GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType]]]) -> dst

参数说明

  • src: 输入图像。
  • ksize: 滤波器窗口的大小,格式为 (宽度, 高度)。例如,(5, 5) 表示一个 5x5 的滤波器窗口。
  • sigmaX: 高斯核在 X 方向上的标准差。如果设置为 0,OpenCV 会根据 ksize 自动计算。
  • dst: 输出图像。如果未指定,则默认与输入图像具有相同的类型和大小。
  • sigmaY: 高斯核在 Y 方向上的标准差。如果未指定,则默认等于 sigmaX
  • borderType: 边界填充方式,默认为cv2.BORDER_DEFAULT。常见的边界填充方式有:
    • cv2.BORDER_CONSTANT: 用常数值填充边界。
    • cv2.BORDER_REFLECT: 用镜像反射的方式填充边界。
    • cv2.BORDER_REPLICATE: 用边界像素值重复填充边界。
    • cv2.BORDER_WRAP: 用环绕方式填充边界。
py 复制代码
#高斯滤波,相当于在均值滤波的基础上添加了权重,离中心点越近,权重越高,1 为标准差
gaussian = cv2.GaussianBlur(img,(5,5),1)
cv_show('gaussian',gaussian)

中值滤波

中值滤波是非线性的滤波方法,主要用于去除椒盐噪声。它的工作原理是用邻域内所有像素值的中位数替换中心像素值。中值滤波在opencv中使用medianBlur方法,其函数原型如下:

cv2.medianBlur(src, ksize[, dst]) -> dst

参数说明

  • src: 输入图像。
  • ksize: 滤波器窗口的大小,必须是大于 1 的奇数。例如,5 表示一个 5x5 的滤波器窗口。
  • dst: 输出图像。如果未指定,则默认与输入图像具有相同的类型和大小。
py 复制代码
# 中值滤波,围绕中心点的数据中从大到小排序,取中值
median = cv2.medianBlur(img,5)
cv_show('median',median)

上述三种方法各有不同,让我们将这些结果放到一起进行对比观察一下,因为opencv所有的图像信息都是numpy数组,在此处使用numpy进行拼接展示

py 复制代码
# 对比展示所有图片
res = np.hstack((blur,gaussian,median))
cv_show("res",res)
相关推荐
Mr.Q几秒前
OpenCV和Qt坐标系不一致问题
qt·opencv
陈鋆18 分钟前
智慧城市初探与解决方案
人工智能·智慧城市
qdprobot18 分钟前
ESP32桌面天气摆件加文心一言AI大模型对话Mixly图形化编程STEAM创客教育
网络·人工智能·百度·文心一言·arduino
QQ395753323719 分钟前
金融量化交易模型的突破与前景分析
人工智能·金融
QQ395753323720 分钟前
金融量化交易:技术突破与模型优化
人工智能·金融
The_Ticker32 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客38 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf239 分钟前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li1 小时前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
新加坡内哥谈技术1 小时前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt