『玩转Streamlit』--环境配置

尽管Streamlit的使用非常直观,但正确的环境配置对于充分发挥其潜力仍然至关重要。

本篇将介绍如何从头开始配置Streamlit环境,以及Streamlit开发过程中常用的几个命令。

最后通过一个简单的示例演示开发Streamlit应用的过程。

1. 安装

Streamlit是纯Python的框架,只依赖Python环境,

目前最新的Streamlit v1.39版本,需要Python3.8及以上的版本。

Streamlit已经发布到pypi,使用pip安装非常简单。

bash 复制代码
pip install streamlit 

安装完成后,验证是否安装成功使用下面的命令:

bash 复制代码
streamlit hello

这个Streamlit中自带的示例工程,如果安装成功,执行之后会自动打开浏览器,

http://localhost:8501/显示示例工程。

一共有4个Demo ,可以从左半边的菜单中点开感受下Streamlit的魅力。

2. 常用子命令

Streamlit子命令不多,通过--help参数可以查看。

bash 复制代码
$  streamlit --help
Usage: streamlit [OPTIONS] COMMAND [ARGS]...

  Try out a demo with:

      $ streamlit hello

  Or use the line below to run your own script:

      $ streamlit run your_script.py

Options:
  --log_level [error|warning|info|debug]
  --version                       Show the version and exit.
  --help                          Show this message and exit.

Commands:
  activate  Activate Streamlit by entering your email.
  cache     Manage the Streamlit cache.
  config    Manage Streamlit's config settings.
  docs      Show help in browser.
  hello     Runs the Hello World script.
  help      Print this help message.
  run       Run a Python script, piping stderr to Streamlit.
  version   Print Streamlit's version number.

最常用的是run子命令,这是用来执行Streamlit App的,run子命令本身也有很多的参数,

比如,App的IP地址,端口,主题,日志,自动重载脚本等等。

下面的命令可以查看run子命令的所有参数。

bash 复制代码
$  streamlit run --help

此外,config子命令可以快速查看当前对Streamlit的所有配置。

bash 复制代码
$  streamlit config show

cache子命令可以用来快速清理缓存。

bash 复制代码
$  streamlit cache clear

开发过程中,用的较多的就是上面三个子命令。

3. 第一个App

最后,我们用Streamlit来做一个简单的数据分析的应用,以此体会下它其强大之处。

3.1. 创建测试数据

首先创建一些测试数据,通过pandasnumpy创建20条时间序列数据。

python 复制代码
# 创建时间序列测试数据
A = np.random.randint(1, 80, size=(20, 1))
B = np.random.randint(20, 100, size=(20, 1))
df = pd.DataFrame()
df.index = pd.date_range("2024/10/01", periods=20)
df["A"] = A
df["B"] = B

A列B列是随机生成的数据,每次运行都会改变。

3.2. 用表格数据

接下来就是Streamlit登场的时候了,页面上显示pandasDataFrame数据很简单,就一行代码。

python 复制代码
# 显示数据
st.table(df)

浏览器访问:++http://localhost:8501/++

可以加个标题,稍微美化一下。

python 复制代码
st.header("第一个APP")
st.divider() # 一条分割线

3.3. 用折线图显示数据

Streamlit表格 显示数据只要一行代码,同样,用折线图显示数据也只要一行代码。

python 复制代码
# 显示折线图
st.line_chart(df)

3.4. 动态改变数据范围

接下来,添加Streamlit的控件,让我们可以动态的改变表格和折线图中的数据范围。

python 复制代码
date_range = st.slider(
    "日期范围",
    min_value=datetime(2024, 10, 1),
    max_value=datetime(2024, 10, 20),
    value=(datetime(2024, 10, 1), datetime(2024, 10, 20)),
)
st.write(date_range)

添加一个数据范围的控件,范围改变时,用date_range的实际值去更新页面要显示的数据。

python 复制代码
# graph_data是按日期过滤后的数据
graph_data = df.copy()
graph_data = graph_data[graph_data.index >= date_range[0]]
graph_data = graph_data[graph_data.index <= date_range[1]]

表格和折线图中的数据改成上面的graph_data

python 复制代码
# 显示折线图
st.line_chart(graph_data)

# 显示数据
st.table(graph_data)

这样,我们就可以在页面上动态改变数据范围,同时更新数据表格和折线图。

4. 总结

短短几行代码,就生成了一个展示DataFrame数据的Web应用

传统的Web开发方式 相比,不需要任何前端的知识(HTMLCSSjavascript等),

而且,通过使用封装好的控件(tableline_chart等),开发效率极高。

Jupyter Notebook相比,为用户提供了一个友好的操作界面,简单直观。

不需要用户通过修改代码来尝试不同的图表。

示例最终的完整代码如下:

python 复制代码
import streamlit as st
import pandas as pd
import numpy as np
from datetime import datetime

# 创建时间序列测试数据
A = np.random.randint(1, 80, size=(20, 1))
B = np.random.randint(20, 100, size=(20, 1))
df = pd.DataFrame()
df.index = pd.date_range("2024/10/01", periods=20)
df["A"] = A
df["B"] = B

st.header("第一个APP")
st.divider()

# 增加日期范围动态调整
date_range = st.slider(
    "日期范围",
    min_value=datetime(2024, 10, 1),
    max_value=datetime(2024, 10, 20),
    value=(datetime(2024, 10, 1), datetime(2024, 10, 20)),
)
st.write(date_range)

graph_data = df.copy()
graph_data = graph_data[graph_data.index >= date_range[0]]
graph_data = graph_data[graph_data.index <= date_range[1]]

# 显示折线图
st.line_chart(graph_data)

# 显示数据
st.table(graph_data)

run子命令来运行这个脚本即可。

bash 复制代码
streamlit run main.py
相关推荐
哥本哈士奇2 天前
Streamlit + LangChain 1.0 简单实现智能问答前后端
langchain·streamlit
wang_yb4 天前
掌握相关性分析:读懂数据间的“悄悄话”
大数据·databook
wang_yb8 天前
数据点的“社交距离”:衡量它们之间的相似与差异
大数据·databook
wang_yb12 天前
搞懂“元数据”:给数据办一张“身份证”
大数据·databook
wang_yb14 天前
数据会说谎?三大推断方法帮你“审问”数据真相
大数据·databook
wang_yb18 天前
用样本猜总体的秘密武器,4大抽样分布总结
大数据·databook
wang_yb21 天前
Manim v0.19.1 发布啦!三大新特性让动画制作更丝滑
databook·manim
wang_yb24 天前
告别盲人摸象,数据分析的抽样方法总结
大数据·databook
wang_yb1 个月前
Manim进阶:用背景图片让你的数学视频脱颖而出
databook·manim
wang_yb1 个月前
让你的动画“活”过来:Manim 节奏控制指南 (Rate Functions)
databook·manim