Spark-数据共享

目录

广播变量

总结

累加器


广播变量

如果我们要在分布式计算里面分发大的变量数据,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

减少task线程对应变量的定义,节省内存空间

例:定义广播变量,让进程中的线程共用变量num

python 复制代码
# 广播变量
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成广播变量
b_obj = sc.broadcast(num)

rdd = sc.parallelize([1,2,3,4])

# 转化计算
def func(x):
    # 广播变量无法修改
    # b_obj.value=20
    # 获取广播变量值
    return x+b_obj.value

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

总结

广播变量将Driver中的变量数据传递到Executor的内存中,让Executor的多个task共用变量值

累加器

避免资源抢占造成的计算错误

例:

python 复制代码
# 累加器
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成累加器
a_obj = sc.accumulator(num)
# 生成rdd
rdd = sc.parallelize([1,2,3,4])

# 对rdd进行计算
def func(x):
    print(x) # 输出rdd中元素数据
    # 对累加器的值进行修改 每次加1
    a_obj.add(1)
    return (x,1)

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

# 查看累加器的数据
print(a_obj.value)
相关推荐
冰芒芒17 分钟前
Kafka-2 Kafka的特点
分布式·kafka
白鲸开源2 小时前
实战干货:Apache DolphinScheduler 参数使用与优化总结
大数据·程序员·开源
yumgpkpm2 小时前
CMP(类Cloudera CDP 7.3 404版华为Kunpeng)与其他大数据平台对比
大数据·hive·hadoop·elasticsearch·kafka·hbase·cloudera
KYumii2 小时前
RabbitMQ快速上手
分布式·rabbitmq
快乐的流畅2 小时前
iChat:RabbitMQ封装
分布式·rabbitmq·ruby
JZC_xiaozhong2 小时前
跨系统流程如何打通?选 BPM 平台认准这三点
大数据·运维·自动化·数据集成与应用集成·业务流程管理·流程设计可视化·流程监控
中科岩创2 小时前
某地公园桥梁自动化监测服务项目
大数据·人工智能·物联网·自动化
xie_pin_an3 小时前
RabbitMQ 从入门到实战:核心特性、应用场景与高级用法全解析
分布式·rabbitmq
艾斯比的日常3 小时前
Kafka Partition 深度解析:原理、策略与实战优化
分布式·kafka
希赛网3 小时前
2025年第四期DAMA数据治理CDGA考试练习题
大数据·cdga·cdgp·dama·数据治理·题库