Spark-数据共享

目录

广播变量

总结

累加器


广播变量

如果我们要在分布式计算里面分发大的变量数据,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

减少task线程对应变量的定义,节省内存空间

例:定义广播变量,让进程中的线程共用变量num

python 复制代码
# 广播变量
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成广播变量
b_obj = sc.broadcast(num)

rdd = sc.parallelize([1,2,3,4])

# 转化计算
def func(x):
    # 广播变量无法修改
    # b_obj.value=20
    # 获取广播变量值
    return x+b_obj.value

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

总结

广播变量将Driver中的变量数据传递到Executor的内存中,让Executor的多个task共用变量值

累加器

避免资源抢占造成的计算错误

例:

python 复制代码
# 累加器
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成累加器
a_obj = sc.accumulator(num)
# 生成rdd
rdd = sc.parallelize([1,2,3,4])

# 对rdd进行计算
def func(x):
    print(x) # 输出rdd中元素数据
    # 对累加器的值进行修改 每次加1
    a_obj.add(1)
    return (x,1)

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

# 查看累加器的数据
print(a_obj.value)
相关推荐
码界筑梦坊1 小时前
基于Spark的抖音数据分析热度预测系统
大数据·信息可视化·数据分析·spark·毕业设计·个性化推荐
潘多编程2 小时前
Spring Boot分布式项目重试实战:九种失效场景与正确打开方式
spring boot·分布式·后端
生信学习小达人2 小时前
arcgis10.8 Toolbox中没有找到conversion tools模块
大数据
Oo_Amy_oO3 小时前
Airflow+Spark/Flink vs. Kettle
大数据·flink·spark
后端小肥肠4 小时前
港大团队开源LightRAG:知识图谱+双层检索,复杂问答准确率飙升30%
大数据·人工智能·openai
加油,旭杏5 小时前
【Redis】服务端高并发分布式结构
数据库·redis·分布式
信徒_8 小时前
Kafka 回溯消费
分布式·kafka
郭涤生11 小时前
Chapter 11: Stream Processing_《Designing Data-Intensive Application》
笔记·分布式
惊醒幡然115 小时前
消息队列之-Kafka
分布式·kafka
计算机毕设定制辅导-无忧学长15 小时前
TDengine 权限管理与安全配置实战(二)
大数据·安全·tdengine