Spark-数据共享

目录

广播变量

总结

累加器


广播变量

如果我们要在分布式计算里面分发大的变量数据,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

减少task线程对应变量的定义,节省内存空间

例:定义广播变量,让进程中的线程共用变量num

python 复制代码
# 广播变量
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成广播变量
b_obj = sc.broadcast(num)

rdd = sc.parallelize([1,2,3,4])

# 转化计算
def func(x):
    # 广播变量无法修改
    # b_obj.value=20
    # 获取广播变量值
    return x+b_obj.value

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

总结

广播变量将Driver中的变量数据传递到Executor的内存中,让Executor的多个task共用变量值

累加器

避免资源抢占造成的计算错误

例:

python 复制代码
# 累加器
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成累加器
a_obj = sc.accumulator(num)
# 生成rdd
rdd = sc.parallelize([1,2,3,4])

# 对rdd进行计算
def func(x):
    print(x) # 输出rdd中元素数据
    # 对累加器的值进行修改 每次加1
    a_obj.add(1)
    return (x,1)

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

# 查看累加器的数据
print(a_obj.value)
相关推荐
鸭鸭鸭进京赶烤1 小时前
大学专业科普 | 云计算、大数据
大数据·云计算
G皮T5 小时前
【Elasticsearch】自定义评分检索
大数据·elasticsearch·搜索引擎·查询·检索·自定义评分·_score
掘金-我是哪吒7 小时前
分布式微服务系统架构第156集:JavaPlus技术文档平台日更-Java线程池使用指南
java·分布式·微服务·云原生·架构
亲爱的非洲野猪8 小时前
Kafka消息积压的多维度解决方案:超越简单扩容的完整策略
java·分布式·中间件·kafka
活跃家族8 小时前
分布式压测
分布式
涤生大数据8 小时前
Apache Spark 4.0:将大数据分析提升到新的水平
数据分析·spark·apache·数据开发
搞笑的秀儿8 小时前
信息新技术
大数据·人工智能·物联网·云计算·区块链
SelectDB8 小时前
SelectDB 在 AWS Graviton ARM 架构下相比 x86 实现 36% 性价比提升
大数据·架构·aws
二二孚日9 小时前
自用华为ICT云赛道Big Data第五章知识点-Flume海量日志聚合
大数据·华为
前端世界9 小时前
HarmonyOS开发实战:鸿蒙分布式生态构建与多设备协同发布全流程详解
分布式·华为·harmonyos