Spark-数据共享

目录

广播变量

总结

累加器


广播变量

如果我们要在分布式计算里面分发大的变量数据,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

减少task线程对应变量的定义,节省内存空间

例:定义广播变量,让进程中的线程共用变量num

python 复制代码
# 广播变量
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成广播变量
b_obj = sc.broadcast(num)

rdd = sc.parallelize([1,2,3,4])

# 转化计算
def func(x):
    # 广播变量无法修改
    # b_obj.value=20
    # 获取广播变量值
    return x+b_obj.value

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

总结

广播变量将Driver中的变量数据传递到Executor的内存中,让Executor的多个task共用变量值

累加器

避免资源抢占造成的计算错误

例:

python 复制代码
# 累加器
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成累加器
a_obj = sc.accumulator(num)
# 生成rdd
rdd = sc.parallelize([1,2,3,4])

# 对rdd进行计算
def func(x):
    print(x) # 输出rdd中元素数据
    # 对累加器的值进行修改 每次加1
    a_obj.add(1)
    return (x,1)

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

# 查看累加器的数据
print(a_obj.value)
相关推荐
Deryck_德瑞克1 小时前
redis和分布式锁
分布式
徐徐同学1 小时前
cpolar为IT-Tools 解锁公网访问,远程开发再也不卡壳
java·开发语言·分布式
视界先声2 小时前
国产分布式存储替代VMware vSphere?:20+功能对比,一文了解SmartX
分布式
琅琊榜首20204 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
TTBIGDATA4 小时前
【knox】User: knox is not allowed to impersonate admin
大数据·运维·ambari·hdp·trino·knox·bigtop
紧固视界5 小时前
了解常见紧固件分类标准
大数据·制造·紧固件·上海紧固件展
无忧智库5 小时前
跨国制造企业全球供应链协同平台(SRM+WMS+TMS)数字化转型方案深度解析:打造端到端可视化的“数字供应链“(WORD)
大数据
乐迪信息6 小时前
乐迪信息:AI防爆摄像机在船舶监控的应用
大数据·网络·人工智能·算法·无人机
Hernon7 小时前
AI智能体 - 探索与发现 Clawdbot >> Moltbot
大数据·人工智能·ai智能体·ai开发框架
Mikhail_G7 小时前
Mysql数据库操作指南——排序(零基础篇十)
大数据·数据库·sql·mysql·数据分析