Spark-数据共享

目录

广播变量

总结

累加器


广播变量

如果我们要在分布式计算里面分发大的变量数据,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

减少task线程对应变量的定义,节省内存空间

例:定义广播变量,让进程中的线程共用变量num

python 复制代码
# 广播变量
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成广播变量
b_obj = sc.broadcast(num)

rdd = sc.parallelize([1,2,3,4])

# 转化计算
def func(x):
    # 广播变量无法修改
    # b_obj.value=20
    # 获取广播变量值
    return x+b_obj.value

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

总结

广播变量将Driver中的变量数据传递到Executor的内存中,让Executor的多个task共用变量值

累加器

避免资源抢占造成的计算错误

例:

python 复制代码
# 累加器
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成累加器
a_obj = sc.accumulator(num)
# 生成rdd
rdd = sc.parallelize([1,2,3,4])

# 对rdd进行计算
def func(x):
    print(x) # 输出rdd中元素数据
    # 对累加器的值进行修改 每次加1
    a_obj.add(1)
    return (x,1)

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

# 查看累加器的数据
print(a_obj.value)
相关推荐
Elastic 中国社区官方博客11 分钟前
Elasticsearch:如何创建知识库并使用 AI Assistant 来配置 slack 连接器
大数据·人工智能·elasticsearch·搜索引擎·全文检索·信息与通信
XIAOYU67201317 分钟前
中专学历,在服装设计行业真的没出路吗?
大数据
TDengine (老段)22 分钟前
TDengine IDMP 赋能新能源:光伏电站智能运维实践
大数据·运维·数据库·物联网·时序数据库·tdengine·涛思数据
努力的光头强2 小时前
《智能体设计模式》从零基础入门到精通,看这一篇就够了!
大数据·人工智能·深度学习·microsoft·机器学习·设计模式·ai
小园子的小菜2 小时前
深度剖析Elasticsearch数据写入与读取:从分片同步到核心组件协同
大数据·elasticsearch·搜索引擎
喵了几个咪4 小时前
Golang微服务框架Kratos应用分布式任务队列Machinery
分布式·微服务·golang
2501_941089194 小时前
5G技术与物联网的融合:智能城市与工业革命的加速器
spark
x***58704 小时前
后端分布式缓存一致性哈希,Java实现
分布式·缓存·哈希算法
samLi06205 小时前
【实证分析】股票市场羊群效应、股市羊群效应CSSD和CSAD数据集(2000-2024年)
大数据
g***86696 小时前
RabbitMQ之交换机
分布式·rabbitmq·ruby