Spark-数据共享

目录

广播变量

总结

累加器


广播变量

如果我们要在分布式计算里面分发大的变量数据,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

减少task线程对应变量的定义,节省内存空间

例:定义广播变量,让进程中的线程共用变量num

python 复制代码
# 广播变量
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成广播变量
b_obj = sc.broadcast(num)

rdd = sc.parallelize([1,2,3,4])

# 转化计算
def func(x):
    # 广播变量无法修改
    # b_obj.value=20
    # 获取广播变量值
    return x+b_obj.value

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

总结

广播变量将Driver中的变量数据传递到Executor的内存中,让Executor的多个task共用变量值

累加器

避免资源抢占造成的计算错误

例:

python 复制代码
# 累加器
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成累加器
a_obj = sc.accumulator(num)
# 生成rdd
rdd = sc.parallelize([1,2,3,4])

# 对rdd进行计算
def func(x):
    print(x) # 输出rdd中元素数据
    # 对累加器的值进行修改 每次加1
    a_obj.add(1)
    return (x,1)

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

# 查看累加器的数据
print(a_obj.value)
相关推荐
YangYang9YangYan7 分钟前
2026中专大数据专业学习指南
大数据
yumgpkpm8 分钟前
预测:2026年大数据软件+AI大模型的发展趋势
大数据·人工智能·算法·zookeeper·kafka·开源·cloudera
无级程序员12 分钟前
大数据Hive之拉链表增量取数合并设计(主表加历史表合并成拉链表)
大数据·hive·hadoop
消失的旧时光-19431 小时前
第十六课实战:分布式锁与限流设计 —— 从原理到可跑 Demo
redis·分布式·缓存
若水不如远方1 小时前
分布式一致性(三):共识的黎明——Quorum 机制与 Basic Paxos
分布式·后端·算法
py小王子1 小时前
dy评论数据爬取实战:基于DrissionPage的自动化采集方案
大数据·开发语言·python·毕业设计
龙山云仓2 小时前
MES系统超融合架构
大数据·数据库·人工智能·sql·机器学习·架构·全文检索
会算数的⑨2 小时前
Kafka知识点问题驱动式的回顾与复习——(一)
分布式·后端·中间件·kafka
张小凡vip2 小时前
Kafka--使用 Kafka Connect 导入/导出数据
分布式·kafka
无忧智库2 小时前
某市“十五五“知识产权大数据监管平台与全链条保护系统建设方案深度解读(WORD)
大数据·人工智能