Spark-数据共享

目录

广播变量

总结

累加器


广播变量

如果我们要在分布式计算里面分发大的变量数据,这个都会由Driver端进行分发,一般来讲,如果这个变量不是广播变量,那么每个task就会分发一份,这在task数目十分多的情况下Driver的带宽会成为系统的瓶颈,而且会大量消耗task服务器上的资源,如果将这个变量声明为广播变量,那么每个executor拥有一份,这个executor启动的task会共享这个变量,节省了通信的成本和服务器的资源。

减少task线程对应变量的定义,节省内存空间

例:定义广播变量,让进程中的线程共用变量num

python 复制代码
# 广播变量
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成广播变量
b_obj = sc.broadcast(num)

rdd = sc.parallelize([1,2,3,4])

# 转化计算
def func(x):
    # 广播变量无法修改
    # b_obj.value=20
    # 获取广播变量值
    return x+b_obj.value

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

总结

广播变量将Driver中的变量数据传递到Executor的内存中,让Executor的多个task共用变量值

累加器

避免资源抢占造成的计算错误

例:

python 复制代码
# 累加器
from pyspark import SparkContext


sc  = SparkContext()

num = 10
# 将变量定义成累加器
a_obj = sc.accumulator(num)
# 生成rdd
rdd = sc.parallelize([1,2,3,4])

# 对rdd进行计算
def func(x):
    print(x) # 输出rdd中元素数据
    # 对累加器的值进行修改 每次加1
    a_obj.add(1)
    return (x,1)

rdd_map = rdd.map(func)

# 查看数据
res = rdd_map.collect()
print(res)

# 查看累加器的数据
print(a_obj.value)
相关推荐
weixin_537217063 分钟前
AI 智能体如何利用文件系统进行上下文工程
大数据·人工智能
见识星球11 分钟前
名企校招攻略
大数据·python
路边草随风15 分钟前
starrocks compaction 进度问题定位
大数据·sql
档案宝档案管理40 分钟前
核心功能揭秘——档案管理系统如何破解档案管理难题?
大数据·数据库·安全·档案·档案管理
熊文豪2 小时前
【前瞻创想】Kurator:站在巨人肩膀上的分布式云原生创新实践
分布式·云原生·kurator
盟接之桥2 小时前
盟接之桥说制造:“盟接之桥”为何成了“断桥”?——制造企业困局突围的三重思考
大数据·人工智能·物联网·产品运营·制造
五度易链-区域产业数字化管理平台2 小时前
如何构建高质量产业数据信息库?五度易链的“八大核心库”与数据治理实践
大数据·人工智能
Elastic 中国社区官方博客2 小时前
用 Elasticsearch 构建一个 ChatGPT connector 来查询 GitHub issues
大数据·人工智能·elasticsearch·搜索引擎·chatgpt·github·全文检索
哲霖软件3 小时前
设备自动化行业ERP选型
大数据
武子康3 小时前
大数据-172 Elasticsearch 索引操作与 IK 分词器落地实战:7.3/8.15 全流程速查
大数据·后端·elasticsearch