用OpenCV写一个简单的尺寸检测程序

工业生产离不开检测,用到机器视觉常见的检测有外观检测、尺寸检测、缺陷检测、检测结果判读等。外观检测、尺寸检测、缺陷检测等可以直接通过工业相机获取图像,让后进行必要的图像处理,提取检测目标及其信息进行分析判断并输出结果,这个可以连续在线作业,这种检测方式很常见。检测结果判读,是用电脑代替人工分析检测设备所获得的图片,并输入结果,如金相分析,光谱分析等。

说到机器视觉就离不开光源与相机(或摄像机)。相机与镜头是获得图片不可确少的设备;合适分辨率的相机,及适配的镜头是获得精准图像的前提。而适当的光照条件则是获得高品质图像必须条件。即便有了这两个条件,得到的图像也还是存在一定的失真,要得到准确的检测结果,相机矫正也是很重要的。这里不去讨论如何去选相机、光源、如何标定矫正相机。只简单演示如何通过一张实现图片位置检测。

下面图片是LM339的图片:

如果要检测该IC Soldering Tails的中心位置,将怎么做呢?下面通过OpenCV编程来实现Soldering Tails的中心位置检测。

新建一个控制台应用程序,在源程序中加入,如下代码:

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace cv;
using namespace std;

int main()
{
    Mat src = imread("1.png");
	if (src.empty())
	{
		cout << "Cann't Open Image!" << endl;
		return -1;
	}
	imshow("Src", src);

	Mat dst, dst1;
	vector<vector<Point>> conturs;
	vector<Rect> rects;
	vector<Vec4i> hierarchy;

	cvtColor(src, dst, COLOR_BGR2GRAY);
	
	threshold(dst, dst1, 200, 250, THRESH_BINARY);
	GaussianBlur(dst1, dst1, Size(5, 5),0);
	findContours(dst1, conturs, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
	 
	int size = conturs.size();
	for (size_t i = 0; i < size; i++)
	{
		Rect rect = boundingRect(conturs[i]);
		if ((rect.area() > 100 && rect.tl().y < 100) || (rect.area() > 100 && rect.tl().y > 500))
		{
			rectangle(src, rect, Scalar(0, 0, 255), 2);
			rects.push_back(rect);
		}
	}

	String str;
	char str1[20];
	size = rects.size();
	for (size_t i = 0; i < size; i++)
	{
		memset(str1, 0, strlen(str1));
		str.clear();
		sprintf_s(str1, "(%d, %d)", rects[i].tl().x + rects[i].width/2, rects[i].tl().y + rects[i].height / 2);
		str.append(str1);
		if (rects[i].tl().y < 100)
			putText(src, str, Point(rects[i].tl().x, rects[i].tl().y - 20), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255, 0, 0), 1);
		else
			putText(src, str, Point(rects[i].tl().x, rects[i].tl().y + 50), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255, 0, 0), 1);
	}

	imshow("Dst1", src);

	waitKey(0);
	return 0;
}

试运行结果,如下:

可以看出,已经检测处所有Soldering Tail的中心坐标,结果是以像素为单位,因未做标定,结果不是长度单位。如果设定好基准与位置允许公差,就可以实现自动判定是否存在位置超差的Pin,从而实现自动检测。

如果要实现自动挑出不良品,还得完成通信接口编程,将检测结果输出到PLC等执行控制机构,让其执行排除不良品的动作。

这只是一个简单的开头,如果有空闲时间,将在后面的博文中将逐步介绍机器更多视觉的实际案例,编程工具软件也不局限于VS与OpenCV,halcon、QT、Python等可能都会涉及也会包含部分硬件配置等方面的内容。

本示例基于OpenCV4.90及VS2022,示例的Project已打包上传到CSDN,下载链接为:https://download.csdn.net/download/billliu66/89894190

相关推荐
虚假程序设计3 分钟前
opencv 自适应阈值
人工智能·opencv·计算机视觉
沐欣工作室_lvyiyi15 分钟前
基于物联网的家庭版防疫面罩设计与实现(论文+源码)
人工智能·stm32·单片机·物联网·目标跟踪
xzzd_jokelin25 分钟前
Spring AI 接入 DeepSeek:开启智能应用的新篇章
java·人工智能·spring·ai·大模型·rag·deepseek
简简单单做算法26 分钟前
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
人工智能·lstm·bilstm·woa-bilstm·双向长短期记忆网络·woa鲸鱼优化·序列预测
星霜旅人33 分钟前
开源机器学习框架
人工智能·机器学习·开源
资源大全免费分享43 分钟前
清华大学第五版《DeepSeek与AI幻觉》附五版合集下载方法
人工智能
龚大龙1 小时前
机器学习(李宏毅)——RL(强化学习)
人工智能·机器学习
LaughingZhu1 小时前
PH热榜 | 2025-02-23
前端·人工智能·经验分享·搜索引擎·产品运营
java_heartLake2 小时前
基于deepseek的AI知识库系统搭建
人工智能·deepseek
阿里云云原生3 小时前
山石网科×阿里云通义灵码,开启研发“AI智造”新时代
网络·人工智能·阿里云·ai程序员·ai程序员体验官