深度学习 .dot()

在 MXNet 中,.dot() 是用于计算两个数组的点积(矩阵乘法)的方法。这个方法适用于一维和二维数组,并返回它们的点积结果。

语法

复制代码
ndarray1.dot(ndarray2)

参数

  • ndarray1: 第一个输入数组。
  • ndarray2: 第二个输入数组,必须与第一个数组的形状兼容。

返回值

  • 返回一个新的 ndarray,表示两个输入数组的点积结果。

示例

复制代码
import mxnet as mx

# 创建两个 ndarray
arr1 = mx.nd.array([[1, 2], [3, 4]])
arr2 = mx.nd.array([[5, 6], [7, 8]])

# 计算矩阵的点积
result = arr1.dot(arr2)

print(result)  # 输出: [[19. 22.]
               #          [43. 50.]]

注意事项

  • 对于一维数组,.dot() 方法计算的是向量的点积;对于二维数组,计算的是矩阵的乘法。
  • 确保输入数组的形状是匹配的。如果矩阵 A 的列数与矩阵 B 的行数不相等,调用 .dot() 方法会引发错误。

一维数组示例

复制代码
# 一维数组
vec1 = mx.nd.array([1, 2, 3])
vec2 = mx.nd.array([4, 5, 6])

# 计算向量的点积
dot_product = vec1.dot(vec2)

print(dot_product)  # 输出: 32 (1*4 + 2*5 + 3*6)

应用场景

  • .dot() 方法广泛应用于线性代数运算、机器学习模型中的权重更新以及深度学习中的前向传播等场景。
相关推荐
Niuguangshuo5 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火5 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887825 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a5 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily6 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15886 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01176 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理
星爷AG I6 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
爱吃泡芙的小白白6 小时前
CNN参数量计算全解析:从基础公式到前沿优化
人工智能·神经网络·cnn·参数量
拐爷7 小时前
vibe‑coding 九阳神功之喂:把链接喂成“本地知识”,AI 才能稳定干活(API / 设计 / 报道 / 截图)
人工智能