使用Ollama测试OpenAI的Swarm多智能体编排框架

Ollama

https://ollama.com/

bash 复制代码
ollama run qwen2.5

Install

Requires Python 3.10+

bash 复制代码
pip install git+https://github.com/openai/swarm.git

代码V1

bash 复制代码
# 导入Swarm和Agent类
from swarm import Swarm, Agent
from openai import OpenAI 
# 实例化Swarm客户端
openai_client = OpenAI(base_url='http://192.168.1.100:11434/v1/',api_key='xxx')
client = Swarm(openai_client)

# 定义一个函数,用于将对话交接给智能体B
def transfer_to_agent_b():
    return agent_b

# 定义智能体A
agent_a = Agent(
    name="Agent A",
    instructions="You are a helpful agent.",
    functions=[transfer_to_agent_b]
)

# 定义智能体B
agent_b = Agent(
    name="Agent B",
    #model_override="qwen2.5",
    instructions="Only speak in Haikus.",
)

# 运行Swarm,并传入用户消息
response = client.run(
    agent=agent_a,
    model_override="qwen2.5",
    messages=[{"role": "user", "content": "I want to talk to agent B."}]
)

# 打印智能体B的回复
print(response.messages[-1]["content"])
bash 复制代码
Invisible thread connects,
Voice echoes, B responds now,
Silence brief then words.

代码V2

bash 复制代码
# 首先,安装Swarm框架(假设您已经在命令行中执行了此步骤)
# pip install git+ssh://git@github.com/openai/swarm.git

# 导入Swarm和Agent类
from swarm import Swarm, Agent
from openai import OpenAI
# 实例化Swarm客户端
openai_client = OpenAI(base_url='http://20.168.1.122:11434/v1/',api_key='x')
client = Swarm(openai_client)

# 定义一个函数,用于将对话交接给智能体B
def transfer_to_agent_b():
    return agent_b

# 定义智能体A
agent_a = Agent(
    name="Agent A",
    instructions="你是一个乐于助人的智能体。",
    functions=[transfer_to_agent_b]
)

# 定义智能体B
agent_b = Agent(
    name="Agent B",
    # model_override="qwen2.5",
    instructions="只用中文歇后语说话。",
)

# 运行Swarm,并传入用户消息
response = client.run(
    agent=agent_a,
    model_override="qwen2.5",
    messages=[{"role": "user", "content": "我想和智能体B对话。"}]
)

# 打印智能体B的回复
print(response.messages[-1]["content"])


#响应
好的,现在你将与智能体B对话。它是你的助手了,请对其说些什么吧!

智能体B:你好呀!准备好了可以开始我们的交流了呢。有什么问题或者想知道的内容尽管问哦。

参考链接:

https://github.com/openai/swarm

https://mp.weixin.qq.com/s/LpHfKX5SUKE19Dh9o9i7Fw

相关推荐
健忘的派大星1 小时前
什么是RAG,有哪些RAG引擎?看完这一篇你就知道了!!
人工智能·ai·语言模型·langchain·llm·agi·rag
小城哇哇4 小时前
【AI多模态大模型】基于AI的多模态数据痴呆病因鉴别诊断
人工智能·ai·语言模型·llm·agi·多模态·rag
雷哥AI工程化6 小时前
不懂模型思维?讲透它-单思维链
llm·aigc
warrah1 天前
fastGpt
oneapi·fastgpt·ollama
健忘的派大星1 天前
手把手教你搭建本地知识库问答AI机器人,学不会你来找我!!
人工智能·ai·语言模型·机器人·llm·知识库·agi
中等生2 天前
深入理解Embedding模型:从原理到实践
人工智能·机器学习·llm
仙魁XAN2 天前
AGI 之 【Dify】 之 Dify 在 Windows 端本地部署调用 Ollama 本地下载的大模型,实现 API 形式进行聊天对话
api·qwen·dify·1024程序员节·ollama
python_知世2 天前
怎么看AI大模型(LLM)、智能体(Agent)、知识库、向量数据库、知识图谱,RAG,AGI 的不同形态?
大模型·llm·知识图谱·agent·知识库·1024程序员节·rag
洛阳泰山3 天前
使用Llama Index与Streamlit实现一个从文本中提取专业术语和定义网页小程序
python·小程序·llm·llama·streamlit·1024程序员节·llamaindex