使用Ollama测试OpenAI的Swarm多智能体编排框架

Ollama

https://ollama.com/

bash 复制代码
ollama run qwen2.5

Install

Requires Python 3.10+

bash 复制代码
pip install git+https://github.com/openai/swarm.git

代码V1

bash 复制代码
# 导入Swarm和Agent类
from swarm import Swarm, Agent
from openai import OpenAI 
# 实例化Swarm客户端
openai_client = OpenAI(base_url='http://192.168.1.100:11434/v1/',api_key='xxx')
client = Swarm(openai_client)

# 定义一个函数,用于将对话交接给智能体B
def transfer_to_agent_b():
    return agent_b

# 定义智能体A
agent_a = Agent(
    name="Agent A",
    instructions="You are a helpful agent.",
    functions=[transfer_to_agent_b]
)

# 定义智能体B
agent_b = Agent(
    name="Agent B",
    #model_override="qwen2.5",
    instructions="Only speak in Haikus.",
)

# 运行Swarm,并传入用户消息
response = client.run(
    agent=agent_a,
    model_override="qwen2.5",
    messages=[{"role": "user", "content": "I want to talk to agent B."}]
)

# 打印智能体B的回复
print(response.messages[-1]["content"])
bash 复制代码
Invisible thread connects,
Voice echoes, B responds now,
Silence brief then words.

代码V2

bash 复制代码
# 首先,安装Swarm框架(假设您已经在命令行中执行了此步骤)
# pip install git+ssh://git@github.com/openai/swarm.git

# 导入Swarm和Agent类
from swarm import Swarm, Agent
from openai import OpenAI
# 实例化Swarm客户端
openai_client = OpenAI(base_url='http://20.168.1.122:11434/v1/',api_key='x')
client = Swarm(openai_client)

# 定义一个函数,用于将对话交接给智能体B
def transfer_to_agent_b():
    return agent_b

# 定义智能体A
agent_a = Agent(
    name="Agent A",
    instructions="你是一个乐于助人的智能体。",
    functions=[transfer_to_agent_b]
)

# 定义智能体B
agent_b = Agent(
    name="Agent B",
    # model_override="qwen2.5",
    instructions="只用中文歇后语说话。",
)

# 运行Swarm,并传入用户消息
response = client.run(
    agent=agent_a,
    model_override="qwen2.5",
    messages=[{"role": "user", "content": "我想和智能体B对话。"}]
)

# 打印智能体B的回复
print(response.messages[-1]["content"])


#响应
好的,现在你将与智能体B对话。它是你的助手了,请对其说些什么吧!

智能体B:你好呀!准备好了可以开始我们的交流了呢。有什么问题或者想知道的内容尽管问哦。

参考链接:

https://github.com/openai/swarm

https://mp.weixin.qq.com/s/LpHfKX5SUKE19Dh9o9i7Fw

相关推荐
oden1 小时前
AI服务商切换太麻烦?一个AI Gateway搞定监控、缓存和故障转移(成本降40%)
后端·openai·api
机器之心7 小时前
OpenAI推出全新ChatGPT Images,奥特曼亮出腹肌搞宣传
人工智能·openai
机器之心7 小时前
SIGGRAPH Asia 2025:摩尔线程赢图形顶会3DGS挑战赛大奖,自研LiteGS全面开源
人工智能·openai
青衫客367 小时前
浅谈 LightRAG —— 把“结构理解”前移到索引阶段的 RAG 新范式
大模型·llm·rag
破烂pan7 小时前
模型推理加速技术全景解析:从基础优化到前沿创新
llm·模型加速
visnix8 小时前
AI大模型-LLM原理剖析到训练微调实战(第二部分:大模型核心原理与Transformer架构)
前端·llm
明阳~9 小时前
Milvus向量数据库:AI时代的向量搜索利器
agent·milvus·向量数据库·rag
智泊AI9 小时前
重磅!小米刚刚发布新模型MiMo-V2-Flash开源了!
llm
安思派Anspire10 小时前
AI智能体:完整课程(初级)
aigc·openai·agent
骚戴11 小时前
大语言模型(LLM)进阶:从闭源大模型 API 到开源大模型本地部署,四种接入路径全解析
java·人工智能·python·语言模型·自然语言处理·llm·开源大模型