简单易用的分类任务开源项目 :classification

项目地址:https://gitcode.net/EricLee/classification

物体识别分类,pytorch 目前数据集

包括 1)Stanford Dogs 数据集 ,

2)14类静态手势自建数据集,

3)imagenet 1000类数据集

classification

物体识别分类

项目介绍

该项目对物体进行识别分类。

项目配置

  • 作者开发环境:
  • Python 3.7
  • PyTorch >= 1.5.1

数据集

1、Stanford Dogs 数据集

2、静态手势识别数据集(handpose_x_gesture_v1)

3、imagenet 数据集 (使用"ILSVRC2012_img_train"数据集将原图裁剪后的部分数据集)

4、Stanford_Cars 数据集(共196 类)

构建自己的数据集

  • 构建一个总的数据集目录,在目录内建立每一个具体类别的子目录,每一个子目录有且只有单独的一个类别。并且文件夹的命名为"数字-名称",比如上图的"one静态手势"的文件夹命名为"000-one"。
  • 注意名称为英文命名,可以由自己定义,类别编号数字从0开始。
  • 另外在具体训练时,需要在训练脚本 train.py 中进行训练集文件夹路径和类别数的对应修改。

预训练模型

1、Stanford Dogs 预训练模型

2、静态手势识别预训练模型(handpose_x_gesture_v1)

3、imagenet 预训练模型

  • 具体分类看json信息即"imagenet_msg.json",运行 read_imagenet_msg.py 读取。
  • "chinese_name"为类别中文名字,"doc_name"为数据集对应的每一类文件夹名字,前面的数字为模型的类别号从 "0"~"999",共 1000 类 。

4、Stanford_Cars 预训练模型

项目使用方法

模型训练

注意: train.py 中的 3个参数与具体分类任务数据集,息息相关,如下所示:

复制代码
    #---------------------------------------------------------------------------------
    parser.add_argument('--train_path', type=str, default = './handpose_x_gesture_v1/',
        help = 'train_path') # 训练集路径
    parser.add_argument('--num_classes', type=int , default = 14,
        help = 'num_classes') #  分类类别个数,gesture 配置为 14 , Stanford Dogs 配置为 120 , imagenet 配置为 1000
    parser.add_argument('--have_label_file', type=bool, default = False,
        help = 'have_label_file') # 是否有配套的标注文件解析才能生成分类训练样本,gesture 配置为 False , Stanford Dogs 配置为 True
  • 根目录下运行命令: python train.py (注意脚本内相关参数配置 )

模型推理

  • 根目录下运行命令: python inference.py (注意脚本内相关参数配置 )
相关推荐
yiersansiwu123d3 小时前
AI伦理治理:在创新与规范之间寻找平衡之道
人工智能
程途拾光1583 小时前
AI 生成内容的伦理边界:深度伪造与信息真实性的保卫战
人工智能
趣味科技v3 小时前
亚马逊云科技储瑞松:AI智能体正在重塑未来工作模式
人工智能·科技
GEO AI搜索优化助手3 小时前
GEO生态重构:生成式引擎优化如何重塑信息传播链
人工智能·搜索引擎·生成式引擎优化·ai优化·geo搜索优化
爱笑的眼睛113 小时前
GraphQL:从数据查询到应用架构的范式演进
java·人工智能·python·ai
江上鹤.1483 小时前
Day40 复习日
人工智能·深度学习·机器学习
QYZL_AIGC3 小时前
全域众链以需求为基、政策为翼,创AI + 实体的可行之路
人工智能
火星资讯3 小时前
Zenlayer AI Gateway 登陆 Dify 市场,轻装上阵搭建 AI Agent
大数据·人工智能
TextIn智能文档云平台3 小时前
LLM处理非结构化文档有哪些痛点
人工智能·文档解析
Coder_Boy_4 小时前
DDD从0到企业级:迭代式学习 (共17章)之 四
java·人工智能·驱动开发·学习