简单易用的分类任务开源项目 :classification

项目地址:https://gitcode.net/EricLee/classification

物体识别分类,pytorch 目前数据集

包括 1)Stanford Dogs 数据集 ,

2)14类静态手势自建数据集,

3)imagenet 1000类数据集

classification

物体识别分类

项目介绍

该项目对物体进行识别分类。

项目配置

  • 作者开发环境:
  • Python 3.7
  • PyTorch >= 1.5.1

数据集

1、Stanford Dogs 数据集

2、静态手势识别数据集(handpose_x_gesture_v1)

3、imagenet 数据集 (使用"ILSVRC2012_img_train"数据集将原图裁剪后的部分数据集)

4、Stanford_Cars 数据集(共196 类)

构建自己的数据集

  • 构建一个总的数据集目录,在目录内建立每一个具体类别的子目录,每一个子目录有且只有单独的一个类别。并且文件夹的命名为"数字-名称",比如上图的"one静态手势"的文件夹命名为"000-one"。
  • 注意名称为英文命名,可以由自己定义,类别编号数字从0开始。
  • 另外在具体训练时,需要在训练脚本 train.py 中进行训练集文件夹路径和类别数的对应修改。

预训练模型

1、Stanford Dogs 预训练模型

2、静态手势识别预训练模型(handpose_x_gesture_v1)

3、imagenet 预训练模型

  • 具体分类看json信息即"imagenet_msg.json",运行 read_imagenet_msg.py 读取。
  • "chinese_name"为类别中文名字,"doc_name"为数据集对应的每一类文件夹名字,前面的数字为模型的类别号从 "0"~"999",共 1000 类 。

4、Stanford_Cars 预训练模型

项目使用方法

模型训练

注意: train.py 中的 3个参数与具体分类任务数据集,息息相关,如下所示:

复制代码
    #---------------------------------------------------------------------------------
    parser.add_argument('--train_path', type=str, default = './handpose_x_gesture_v1/',
        help = 'train_path') # 训练集路径
    parser.add_argument('--num_classes', type=int , default = 14,
        help = 'num_classes') #  分类类别个数,gesture 配置为 14 , Stanford Dogs 配置为 120 , imagenet 配置为 1000
    parser.add_argument('--have_label_file', type=bool, default = False,
        help = 'have_label_file') # 是否有配套的标注文件解析才能生成分类训练样本,gesture 配置为 False , Stanford Dogs 配置为 True
  • 根目录下运行命令: python train.py (注意脚本内相关参数配置 )

模型推理

  • 根目录下运行命令: python inference.py (注意脚本内相关参数配置 )
相关推荐
Yeats_Liao5 分钟前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发
老周聊架构15 分钟前
基于YOLOv8-OBB旋转目标检测数据集与模型训练
人工智能·yolo·目标检测
AKAMAI26 分钟前
基准测试:Akamai云上的NVIDIA RTX Pro 6000 Blackwell
人工智能·云计算·测试
寂寞恋上夜32 分钟前
异步任务怎么设计:轮询/WebSocket/回调(附PRD写法)
网络·人工智能·websocket·网络协议·markdown转xmind·deepseek思维导图
Deepoch32 分钟前
赋能未来:Deepoc具身模型开发板如何成为机器人创新的“基石”
人工智能·机器人·开发板·具身模型·deepoc
格林威1 小时前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
且去填词1 小时前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
九河云1 小时前
从“被动适配”到“主动重构”:企业数字化转型的底层逻辑
大数据·人工智能·安全·重构·数字化转型
Java猿_1 小时前
使用Three.js创建交互式3D地球模型
人工智能·语言模型·自然语言处理