简单易用的分类任务开源项目 :classification

项目地址:https://gitcode.net/EricLee/classification

物体识别分类,pytorch 目前数据集

包括 1)Stanford Dogs 数据集 ,

2)14类静态手势自建数据集,

3)imagenet 1000类数据集

classification

物体识别分类

项目介绍

该项目对物体进行识别分类。

项目配置

  • 作者开发环境:
  • Python 3.7
  • PyTorch >= 1.5.1

数据集

1、Stanford Dogs 数据集

2、静态手势识别数据集(handpose_x_gesture_v1)

3、imagenet 数据集 (使用"ILSVRC2012_img_train"数据集将原图裁剪后的部分数据集)

4、Stanford_Cars 数据集(共196 类)

构建自己的数据集

  • 构建一个总的数据集目录,在目录内建立每一个具体类别的子目录,每一个子目录有且只有单独的一个类别。并且文件夹的命名为"数字-名称",比如上图的"one静态手势"的文件夹命名为"000-one"。
  • 注意名称为英文命名,可以由自己定义,类别编号数字从0开始。
  • 另外在具体训练时,需要在训练脚本 train.py 中进行训练集文件夹路径和类别数的对应修改。

预训练模型

1、Stanford Dogs 预训练模型

2、静态手势识别预训练模型(handpose_x_gesture_v1)

3、imagenet 预训练模型

  • 具体分类看json信息即"imagenet_msg.json",运行 read_imagenet_msg.py 读取。
  • "chinese_name"为类别中文名字,"doc_name"为数据集对应的每一类文件夹名字,前面的数字为模型的类别号从 "0"~"999",共 1000 类 。

4、Stanford_Cars 预训练模型

项目使用方法

模型训练

注意: train.py 中的 3个参数与具体分类任务数据集,息息相关,如下所示:

复制代码
    #---------------------------------------------------------------------------------
    parser.add_argument('--train_path', type=str, default = './handpose_x_gesture_v1/',
        help = 'train_path') # 训练集路径
    parser.add_argument('--num_classes', type=int , default = 14,
        help = 'num_classes') #  分类类别个数,gesture 配置为 14 , Stanford Dogs 配置为 120 , imagenet 配置为 1000
    parser.add_argument('--have_label_file', type=bool, default = False,
        help = 'have_label_file') # 是否有配套的标注文件解析才能生成分类训练样本,gesture 配置为 False , Stanford Dogs 配置为 True
  • 根目录下运行命令: python train.py (注意脚本内相关参数配置 )

模型推理

  • 根目录下运行命令: python inference.py (注意脚本内相关参数配置 )
相关推荐
CCPC不拿奖不改名1 分钟前
RAG基础:基于LangChain 的文本分割实战+文本分块
人工智能·python·langchain·知识库·改行学it·rag·向量库
GIS数据转换器6 分钟前
基于AI的低空数联无人机智慧巡查平台
大数据·人工智能·机器学习·无人机·宠物
J_Xiong011714 分钟前
【Agents篇】09:多智能体协作——分工与涌现
人工智能·ai agent
攒了一袋星辰15 分钟前
Transformer词向量与自注意力机制
人工智能·深度学习·transformer
青春不朽51217 分钟前
TensorFlow 入门指南
人工智能·python·tensorflow
bioinfomatic22 分钟前
对比学习基本原理——以DrugClip为例,从CLIP到DrugClip
人工智能·python
爱吃rabbit的mq23 分钟前
第2章 机器学习的核心概念(上)
人工智能·机器学习
ZCXZ12385296a24 分钟前
YOLO13-C3k2-ConverseB改进:CCTV监控场景下车辆目标检测详解
人工智能·目标检测·目标跟踪
木非哲33 分钟前
AB实验高级必修课(二):从宏观叙事到微观侦查,透视方差分析与回归的本质
人工智能·数据挖掘·回归·abtest
玩电脑的辣条哥33 分钟前
幽灵回复AI已回复但前端不显示的排查与修复
前端·人工智能