简单易用的分类任务开源项目 :classification

项目地址:https://gitcode.net/EricLee/classification

物体识别分类,pytorch 目前数据集

包括 1)Stanford Dogs 数据集 ,

2)14类静态手势自建数据集,

3)imagenet 1000类数据集

classification

物体识别分类

项目介绍

该项目对物体进行识别分类。

项目配置

  • 作者开发环境:
  • Python 3.7
  • PyTorch >= 1.5.1

数据集

1、Stanford Dogs 数据集

2、静态手势识别数据集(handpose_x_gesture_v1)

3、imagenet 数据集 (使用"ILSVRC2012_img_train"数据集将原图裁剪后的部分数据集)

4、Stanford_Cars 数据集(共196 类)

构建自己的数据集

  • 构建一个总的数据集目录,在目录内建立每一个具体类别的子目录,每一个子目录有且只有单独的一个类别。并且文件夹的命名为"数字-名称",比如上图的"one静态手势"的文件夹命名为"000-one"。
  • 注意名称为英文命名,可以由自己定义,类别编号数字从0开始。
  • 另外在具体训练时,需要在训练脚本 train.py 中进行训练集文件夹路径和类别数的对应修改。

预训练模型

1、Stanford Dogs 预训练模型

2、静态手势识别预训练模型(handpose_x_gesture_v1)

3、imagenet 预训练模型

  • 具体分类看json信息即"imagenet_msg.json",运行 read_imagenet_msg.py 读取。
  • "chinese_name"为类别中文名字,"doc_name"为数据集对应的每一类文件夹名字,前面的数字为模型的类别号从 "0"~"999",共 1000 类 。

4、Stanford_Cars 预训练模型

项目使用方法

模型训练

注意: train.py 中的 3个参数与具体分类任务数据集,息息相关,如下所示:

复制代码
    #---------------------------------------------------------------------------------
    parser.add_argument('--train_path', type=str, default = './handpose_x_gesture_v1/',
        help = 'train_path') # 训练集路径
    parser.add_argument('--num_classes', type=int , default = 14,
        help = 'num_classes') #  分类类别个数,gesture 配置为 14 , Stanford Dogs 配置为 120 , imagenet 配置为 1000
    parser.add_argument('--have_label_file', type=bool, default = False,
        help = 'have_label_file') # 是否有配套的标注文件解析才能生成分类训练样本,gesture 配置为 False , Stanford Dogs 配置为 True
  • 根目录下运行命令: python train.py (注意脚本内相关参数配置 )

模型推理

  • 根目录下运行命令: python inference.py (注意脚本内相关参数配置 )
相关推荐
周博洋K1 分钟前
Deepseek的新论文Engram
人工智能
e***98574 分钟前
2024技术趋势:AI领跑,云端边缘共舞
人工智能
智驱力人工智能8 分钟前
构筑安全红线 发电站旋转设备停机合规监测的视觉分析技术与应用 旋转设备停机检测 旋转设备异常检测 设备停机AI行为建模
人工智能·opencv·算法·安全·目标检测·计算机视觉·边缘计算
独自破碎E10 分钟前
怎么优化RAG的检索效果?
人工智能·自然语言处理
这儿有一堆花11 分钟前
从机械傀儡到具身智能:机器人控制模型的演变实录
人工智能·机器人
寻星探路15 分钟前
【算法进阶】滑动窗口与前缀和:从“和为 K”到“最小覆盖子串”的极限挑战
java·开发语言·c++·人工智能·python·算法·ai
予枫的编程笔记15 分钟前
【注册技巧】stackoverflow无法注册解决方案
人工智能·stackoverflow·注册技巧
qwerasda12385221 分钟前
【深度学习】如何使用YOLO11-RevCol模型进行伤口类型识别与分类 擦伤、瘀伤、烧伤、切割伤以及正常状态检测_2
人工智能·深度学习·分类
柳智敏min22 分钟前
AI学术工具:论文写作的“得力编辑”而非“全程代笔”
人工智能
数字孪生家族22 分钟前
基于视频孪生与空间智能深度融合的智慧城市解决方案
人工智能·智慧城市·数字孪生智慧城市·智慧城市建设方案·视频孪生空间智能双驱动