champ模型部署指南

一、介绍

champ是由阿里巴巴、复旦大学和南京大学的研究人员共同提出的一种基于3D的将人物图片转换为视频动画的模型,该方法结合了3D参数化模型(特别是SMPL模型)和潜在扩散模型,能够精确地捕捉和再现人体的3D形状和动态,同时保持动画的时间一致性和视觉真实性,以生成高质量的人类动画视频。

  • 将静态人物图片转换为动态视频动画,通过精确捕捉和再现人体的形状和动作,创造出既真实又可控的动态视觉内容。
  • 能够精确地表示和控制人体的形状和姿势,从源视频中提取的人体几何和运动特征更加准确。
  • 能够将来自一个视频的运动序列应用到另一个不同身份的参考图像上,实现跨身份的动画生成。
  • 在生成视频时保持了角色和背景之间的一致性,同时通过时间对齐模块确保帧之间的流畅过渡,从而产生高质量的视频输出。

二、部署流程

基础配置推荐:

系统:Ubuntu系统,

显卡:3090,

显存:24G,cuda12.1

1.基础环境

  • 查看系统是否有Miniconda3的虚拟环境

    复制代码
    conda -V

    如果输入命令没有显示Conda版本号,则需要安装。

2.更新系统命令

输入下列命令将系统更新及系统下载

复制代码
apt-get update && apt-get install ffmpeg libsm6 libxext6  -y

3.下载模型

输入下列命令对champ模型进行下载

复制代码
git clone https://gitclone.com/github.com/fudan-generative-vision/champ.git

4.创建虚拟环境

  • 创建一个名称为"champ",python版本号为3.10的环境

    conda create -n champ python=3.10

  • 激活"champ"虚拟环境

    conda activate champ

5.下载依赖包

进入champ文件输入下列命令:

复制代码
cd champ
pip install -r requirements.txt  -i https://pypi.tuna.tsinghua.edu.cn/simple

6.下载预训练模型

输入下列命令:

复制代码
git lfs install
git clone https://huggingface.co/fudan-generative-ai/champ pretrained_models

7.下载运动指导动作数据

输入下列命令:

复制代码
git lfs install
git clone https://huggingface.co/datasets/fudan-generative-ai/champ_motions_example example_data

8.运行推理

注意:如果 VRAM 不足,您可以切换到较短的运动序列或从长序列中剪切出一段。我们在其中提供了一个帧范围选择器,您可以将其替换为列表,以方便从序列中剪切出一段。inference.yaml[min_frame_index, max_frame_index]

输入下列命令:

复制代码
python inference.py --config configs/inference/inference.yaml
相关推荐
深圳市恒星物联科技有限公司5 小时前
水质流量监测仪:复合指标监测的管网智能感知设备
大数据·网络·人工智能
断眉的派大星5 小时前
均值为0,方差为1:数据的“标准校服”
人工智能·机器学习·均值算法
A尘埃5 小时前
电子厂PCB板焊点缺陷检测(卷积神经网络CNN)
人工智能·神经网络·cnn
Tadas-Gao5 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
中金快讯5 小时前
新视野混合净值波动有几何?贝莱德基金回撤控制策略是否命中关键?
人工智能
楚兴6 小时前
MacBook M1 安装 OpenClaw 完整指南
人工智能·后端
23遇见6 小时前
探索CANN:开源AI计算底座的关键组件与技术思想
人工智能
jl48638216 小时前
变比测试仪显示屏的“标杆“配置!如何兼顾30000小时寿命与六角矢量图精准显示?
人工智能·经验分享·嵌入式硬件·物联网·人机交互
2301_818730566 小时前
transformer(上)
人工智能·深度学习·transformer
木枷6 小时前
Online Process Reward Learning for Agentic Reinforcement Learning
人工智能·深度学习·机器学习