逻辑回归和分类评估指标知识点总结

逻辑回归-logic regression

概念:

解决二分类问题, 逻辑回归的输入是线性回归的输出

原理:

将线性回归的输出作为逻辑回归的输入, 然后通过激活函数的处理, 以将线性回归的输出映射到一段限定区间内,

通过设置阈值(临界值)来对线性回归的映射输出进行二分类, 即分成两类(根据阈值, 一刀两断)

激活函数:

sigmoid函数:

将线性回归的输出映射到[0,1]区间内(有点把分数进行折合的意思呀)

然后设置阈值(分界点)进行分类判断

损失函数:

对数似然损失

借助log思想, 将真实值(映射值)划分成为0/1两种情况

优化:

提升原本属于1类别的概率, 降低原本属于0类别的概率

api:

sklearn.linear_model.LogisticRegression()

注意:

回归算法, 分类算法的api有时候是可以混合使用的

分类评估指标

前置知识-混淆矩阵:

真正例(TP)

伪反例(FN)

伪正例(FP)

真反例(TN)

精确率+召回率+F1-score:

准确率:

(TP+FP)/(TP+FN+FP+TN)

精确率--查的准不准

TP/(TP+FP)

召回率-查的全不全

TP/(TP+FN)

F1-score

反应模型的稳健性

api:

sklearn.metrics.classification_report

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

roc曲线和auc指标:

roc曲线:

通过tpr和fpr来进行图形绘制, 然后绘制之后, 形成一个指标auc

auc:

越接近1, 效果越好

越接近0, 效果越差

api:

sklearn.metrics.roc_auc_score

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

相关推荐
电商API_180079052472 分钟前
淘宝商品视频提取API全解析:从授权到落地实战
爬虫·python·信息可视化·数据分析·音视频
车队老哥记录生活9 分钟前
强化学习 RL 基础 3:随机近似方法 | 梯度下降
人工智能·算法·机器学习·强化学习
计算机程序设计小李同学10 分钟前
基于 Flask 的养猪场信息模拟系统
后端·python·flask
线束线缆组件品替网17 分钟前
工业防水接口标准解析:Amphenol CONEC 圆形线缆技术详解
人工智能·汽车·电脑·硬件工程·材料工程
闲看云起18 分钟前
LeetCode-day2:字母异位词分组分析
算法·leetcode·职场和发展
Iridescent112119 分钟前
Iridescent:Day38
python
熬夜敲代码的小N20 分钟前
2026 职场生存白皮书:Gemini Pro 实战使用指南
人工智能·python·ai·职场和发展
独自归家的兔22 分钟前
AI 原生应用开发框架深度解析:从单智能体到多智能体协同开发
人工智能
ArkAPI24 分钟前
腾讯AI基础设施的系统论:从推理框架的算子融合到智能体的任务分解
人工智能·ai·google·aigc·腾讯·多模态处理·arkapi
Godspeed Zhao28 分钟前
自动驾驶中的传感器技术83——Sensor Fusion(6)
人工智能·机器学习·自动驾驶