逻辑回归和分类评估指标知识点总结

逻辑回归-logic regression

概念:

解决二分类问题, 逻辑回归的输入是线性回归的输出

原理:

将线性回归的输出作为逻辑回归的输入, 然后通过激活函数的处理, 以将线性回归的输出映射到一段限定区间内,

通过设置阈值(临界值)来对线性回归的映射输出进行二分类, 即分成两类(根据阈值, 一刀两断)

激活函数:

sigmoid函数:

将线性回归的输出映射到[0,1]区间内(有点把分数进行折合的意思呀)

然后设置阈值(分界点)进行分类判断

损失函数:

对数似然损失

借助log思想, 将真实值(映射值)划分成为0/1两种情况

优化:

提升原本属于1类别的概率, 降低原本属于0类别的概率

api:

sklearn.linear_model.LogisticRegression()

注意:

回归算法, 分类算法的api有时候是可以混合使用的

分类评估指标

前置知识-混淆矩阵:

真正例(TP)

伪反例(FN)

伪正例(FP)

真反例(TN)

精确率+召回率+F1-score:

准确率:

(TP+FP)/(TP+FN+FP+TN)

精确率--查的准不准

TP/(TP+FP)

召回率-查的全不全

TP/(TP+FN)

F1-score

反应模型的稳健性

api:

sklearn.metrics.classification_report

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

roc曲线和auc指标:

roc曲线:

通过tpr和fpr来进行图形绘制, 然后绘制之后, 形成一个指标auc

auc:

越接近1, 效果越好

越接近0, 效果越差

api:

sklearn.metrics.roc_auc_score

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

相关推荐
liu****7 小时前
10.指针详解(六)
c语言·开发语言·数据结构·c++·算法
CQ_YM7 小时前
数据结构概念与顺序表
数据结构·算法·线性表
昇腾知识体系7 小时前
vLLM-Ascend双机混部DeepSeek-R1-671B-0528 W8A8量化模型
人工智能
weixin199701080167 小时前
新京报 item_get - 获取详情数据接口对接全攻略:从入门到精通
大数据·人工智能
老贾专利烩7 小时前
听力障碍市场规模扩容驱动因素:人口老龄化与技术进步量化分析
人工智能
大千AI助手7 小时前
曼哈顿距离:概念、起源与应用全解析
人工智能·机器学习·数据挖掘·距离度量·曼哈顿距离·大千ai助手·街区距离
TMT星球7 小时前
曹操出行携手越疆科技共同拓展机器人技术的应用场景和应用能力
人工智能·科技·机器人
Lethehong7 小时前
魔珐星云:让AI拥有身体,开启具身智能新纪元
人工智能·蓝耘元生代·蓝耘maas·魔珐星云
牛客企业服务7 小时前
2025年AI面试趋势解析:企业如何借力工具破解规模化招聘难题?
人工智能·面试·职场和发展
郝学胜-神的一滴7 小时前
OpenGL错误检查与封装:构建健壮的图形渲染系统
开发语言·c++·程序人生·软件工程·图形渲染