逻辑回归和分类评估指标知识点总结

逻辑回归-logic regression

概念:

解决二分类问题, 逻辑回归的输入是线性回归的输出

原理:

将线性回归的输出作为逻辑回归的输入, 然后通过激活函数的处理, 以将线性回归的输出映射到一段限定区间内,

通过设置阈值(临界值)来对线性回归的映射输出进行二分类, 即分成两类(根据阈值, 一刀两断)

激活函数:

sigmoid函数:

将线性回归的输出映射到[0,1]区间内(有点把分数进行折合的意思呀)

然后设置阈值(分界点)进行分类判断

损失函数:

对数似然损失

借助log思想, 将真实值(映射值)划分成为0/1两种情况

优化:

提升原本属于1类别的概率, 降低原本属于0类别的概率

api:

sklearn.linear_model.LogisticRegression()

注意:

回归算法, 分类算法的api有时候是可以混合使用的

分类评估指标

前置知识-混淆矩阵:

真正例(TP)

伪反例(FN)

伪正例(FP)

真反例(TN)

精确率+召回率+F1-score:

准确率:

(TP+FP)/(TP+FN+FP+TN)

精确率--查的准不准

TP/(TP+FP)

召回率-查的全不全

TP/(TP+FN)

F1-score

反应模型的稳健性

api:

sklearn.metrics.classification_report

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

roc曲线和auc指标:

roc曲线:

通过tpr和fpr来进行图形绘制, 然后绘制之后, 形成一个指标auc

auc:

越接近1, 效果越好

越接近0, 效果越差

api:

sklearn.metrics.roc_auc_score

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

相关推荐
独行soc几秒前
2025年渗透测试面试题总结-234(题目+回答)
网络·python·安全·web安全·渗透测试·1024程序员节·安全狮
木头左10 分钟前
年化波动率匹配原则在ETF网格区间选择中的应用
python
清空mega14 分钟前
从零开始搭建 flask 博客实验(3)
后端·python·flask
熙梦数字化30 分钟前
2025汽车零部件行业数字化转型落地方案
大数据·人工智能·汽车
刘海东刘海东33 分钟前
逻辑方程结构图语言的机器实现(草稿)
人工智能
亮剑201837 分钟前
第2节:程序逻辑与控制流——让程序“思考”
开发语言·c++·人工智能
hixiong12339 分钟前
C# OpenCVSharp使用 读光-票证检测矫正模型
人工智能·opencv·c#
程序员小远42 分钟前
7个常见的Jmeter压测问题
自动化测试·软件测试·python·测试工具·测试用例·压力测试·性能测试
大千AI助手44 分钟前
HotpotQA:推动多跳推理问答发展的标杆数据集
人工智能·神经网络·llm·qa·大千ai助手·hotpotqa·多跳推理能力
红尘炼丹客1 小时前
《DeepSeek-OCR: Contexts Optical Compression》速览
人工智能·python·自然语言处理·ocr