逻辑回归和分类评估指标知识点总结

逻辑回归-logic regression

概念:

解决二分类问题, 逻辑回归的输入是线性回归的输出

原理:

将线性回归的输出作为逻辑回归的输入, 然后通过激活函数的处理, 以将线性回归的输出映射到一段限定区间内,

通过设置阈值(临界值)来对线性回归的映射输出进行二分类, 即分成两类(根据阈值, 一刀两断)

激活函数:

sigmoid函数:

将线性回归的输出映射到[0,1]区间内(有点把分数进行折合的意思呀)

然后设置阈值(分界点)进行分类判断

损失函数:

对数似然损失

借助log思想, 将真实值(映射值)划分成为0/1两种情况

优化:

提升原本属于1类别的概率, 降低原本属于0类别的概率

api:

sklearn.linear_model.LogisticRegression()

注意:

回归算法, 分类算法的api有时候是可以混合使用的

分类评估指标

前置知识-混淆矩阵:

真正例(TP)

伪反例(FN)

伪正例(FP)

真反例(TN)

精确率+召回率+F1-score:

准确率:

(TP+FP)/(TP+FN+FP+TN)

精确率--查的准不准

TP/(TP+FP)

召回率-查的全不全

TP/(TP+FN)

F1-score

反应模型的稳健性

api:

sklearn.metrics.classification_report

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

roc曲线和auc指标:

roc曲线:

通过tpr和fpr来进行图形绘制, 然后绘制之后, 形成一个指标auc

auc:

越接近1, 效果越好

越接近0, 效果越差

api:

sklearn.metrics.roc_auc_score

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

相关推荐
emma羊羊3 分钟前
【AI技术安全】
网络·人工智能·安全
2401_838472513 分钟前
C++模拟器开发实践
开发语言·c++·算法
玄同7654 分钟前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
GHZhao_GIS_RS6 分钟前
python中的sort和sorted用法汇总
python·排序·列表
永恒的溪流11 分钟前
环境出问题,再修改
pytorch·python·深度学习
ruxshui11 分钟前
Python多线程环境下连接对象的线程安全管理规范
开发语言·数据库·python·sql
Fxrain11 分钟前
[Reading Paper]FFA-Net
图像处理·人工智能·计算机视觉
GISer_Jing12 分钟前
Memory、Rules、Skills、MCP如何重塑AI编程
前端·人工智能·aigc·ai编程
DS随心转APP14 分钟前
ChatGPT和Gemini回答怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
一人の梅雨14 分钟前
VVIC图片搜索接口进阶实战:服装批发场景下的精准识图与批量调度方案
开发语言·机器学习·php