逻辑回归和分类评估指标知识点总结

逻辑回归-logic regression

概念:

解决二分类问题, 逻辑回归的输入是线性回归的输出

原理:

将线性回归的输出作为逻辑回归的输入, 然后通过激活函数的处理, 以将线性回归的输出映射到一段限定区间内,

通过设置阈值(临界值)来对线性回归的映射输出进行二分类, 即分成两类(根据阈值, 一刀两断)

激活函数:

sigmoid函数:

将线性回归的输出映射到[0,1]区间内(有点把分数进行折合的意思呀)

然后设置阈值(分界点)进行分类判断

损失函数:

对数似然损失

借助log思想, 将真实值(映射值)划分成为0/1两种情况

优化:

提升原本属于1类别的概率, 降低原本属于0类别的概率

api:

sklearn.linear_model.LogisticRegression()

注意:

回归算法, 分类算法的api有时候是可以混合使用的

分类评估指标

前置知识-混淆矩阵:

真正例(TP)

伪反例(FN)

伪正例(FP)

真反例(TN)

精确率+召回率+F1-score:

准确率:

(TP+FP)/(TP+FN+FP+TN)

精确率--查的准不准

TP/(TP+FP)

召回率-查的全不全

TP/(TP+FN)

F1-score

反应模型的稳健性

api:

sklearn.metrics.classification_report

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

roc曲线和auc指标:

roc曲线:

通过tpr和fpr来进行图形绘制, 然后绘制之后, 形成一个指标auc

auc:

越接近1, 效果越好

越接近0, 效果越差

api:

sklearn.metrics.roc_auc_score

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

相关推荐
Echo``3 分钟前
2:QT联合HALCON编程—图像显示放大缩小
开发语言·c++·图像处理·qt·算法
layneyao5 分钟前
大语言模型(LLM)的Prompt Engineering:从入门到精通
人工智能·语言模型·prompt
一点.点5 分钟前
李沐动手深度学习(pycharm中运行笔记)——04.数据操作
pytorch·笔记·python·深度学习·pycharm·动手深度学习
.似水7 分钟前
2025.4.22_C_可变参数列表
java·c语言·算法
Niuguangshuo21 分钟前
Python 设计模式:访问者模式
python·设计模式·访问者模式
Jamesvalley23 分钟前
【Django】新增字段后兼容旧接口 This field is required
后端·python·django
Felven27 分钟前
A. Ideal Generator
java·数据结构·算法
Luck_ff08101 小时前
【Python爬虫详解】第四篇:使用解析库提取网页数据——BeautifuSoup
开发语言·爬虫·python
MoonBit月兔1 小时前
双周报Vol.70: 运算符重载语义变化、String API 改动、IDE Markdown 格式支持优化...多项更新升级!
ide·算法·哈希算法
边缘计算社区1 小时前
FPGA与边缘AI:计算革命的前沿力量
人工智能·fpga开发