逻辑回归和分类评估指标知识点总结

逻辑回归-logic regression

概念:

解决二分类问题, 逻辑回归的输入是线性回归的输出

原理:

将线性回归的输出作为逻辑回归的输入, 然后通过激活函数的处理, 以将线性回归的输出映射到一段限定区间内,

通过设置阈值(临界值)来对线性回归的映射输出进行二分类, 即分成两类(根据阈值, 一刀两断)

激活函数:

sigmoid函数:

将线性回归的输出映射到[0,1]区间内(有点把分数进行折合的意思呀)

然后设置阈值(分界点)进行分类判断

损失函数:

对数似然损失

借助log思想, 将真实值(映射值)划分成为0/1两种情况

优化:

提升原本属于1类别的概率, 降低原本属于0类别的概率

api:

sklearn.linear_model.LogisticRegression()

注意:

回归算法, 分类算法的api有时候是可以混合使用的

分类评估指标

前置知识-混淆矩阵:

真正例(TP)

伪反例(FN)

伪正例(FP)

真反例(TN)

精确率+召回率+F1-score:

准确率:

(TP+FP)/(TP+FN+FP+TN)

精确率--查的准不准

TP/(TP+FP)

召回率-查的全不全

TP/(TP+FN)

F1-score

反应模型的稳健性

api:

sklearn.metrics.classification_report

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

roc曲线和auc指标:

roc曲线:

通过tpr和fpr来进行图形绘制, 然后绘制之后, 形成一个指标auc

auc:

越接近1, 效果越好

越接近0, 效果越差

api:

sklearn.metrics.roc_auc_score

参数:

y_true:目标值的真实值

y_predict:目标值的预测值

相关推荐
sin_hielo1 分钟前
leetcode 1266
数据结构·算法·leetcode
草莓熊Lotso2 分钟前
Linux 2.6 内核 O(1) 调度队列深度解析:为什么它能实现常数时间调度?
linux·运维·服务器·数据结构·人工智能·哈希算法·散列表
渡我白衣2 分钟前
从森林到梯度——梯度提升树的原理、调参与实战
人工智能·深度学习·神经网络·目标检测·机器学习·计算机视觉·自然语言处理
weixin_462446233 分钟前
Python+React 专为儿童打造的汉字学习平台:从学前到小学的智能汉字教育解决方案
python·学习·react.js
Dylan的码园4 分钟前
稀疏 MoE 与原生多模态双驱:2025 大模型技术演进全景
人工智能·机器学习·ai作画·数据挖掘·boosting·oneflow
_-CHEN-_4 分钟前
Prompt Manager: 让你的 AI 提示词管理更专业
人工智能·prompt
mahtengdbb14 分钟前
Yolov8结合CAA-HSFPN网络实现汽车漆面缺陷检测与分类的完整实战指南
yolo·分类·数据挖掘
weixin_397578025 分钟前
Transformer 架构 “Attention Is All You Need“
人工智能
檀越剑指大厂6 分钟前
AI 当主程还能远程开发?TRAE SOLO 的实用体验与cpolar内网突破
人工智能
河码匠7 分钟前
Django rest framework 自定义url
后端·python·django