RT-DETR目标检测onnxruntime和tensorrt推理

使用ultralytics 工程(https://github.com/ultralytics/ultralytics)导出onnx模型:

python 复制代码
from ultralytics import RTDETR

# Load a model
model = RTDETR("rtdetr-l.pt")

# Export the model
model.export(format="onnx")
model.export(format="engine")  

onnxruntime推理

python 复制代码
import cv2
import math
import numpy as np
import onnxruntime


class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush'] #coco80类别 
input_shape = (640, 640) 
score_threshold = 0.5 
nms_threshold = 0.5


def nms(boxes, scores, score_threshold, nms_threshold):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    keep = []
    index = scores.argsort()[::-1] 

    while index.size > 0:
        i = index[0]
        keep.append(i)
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= nms_threshold)[0]
        index = index[idx + 1]
    return keep


def xywh2xyxy(x):
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y


def filter_box(output): #过滤掉无用的框    
    output = np.squeeze(output)
     
    boxes = []
    scores = []
    class_ids = []    
    output = output[output[..., 4] > score_threshold] 
    for i in range(output.shape[0]):
        boxes.append(output[i, :6])
        scores.append(output[i][4])
        class_ids.append(output[i][5])  
            
    boxes = np.array(boxes)
    boxes = xywh2xyxy(boxes)
    boxes[..., [0, 2]] *= input_shape[0]
    boxes[..., [1, 3]] *= input_shape[1]
    return boxes


def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    
    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
    dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im


def scale_boxes(boxes, output_shape):
    # Rescale boxes (xyxy) from self.input_shape to shape
    gain = min(input_shape[0] / output_shape[0], input_shape[1] / output_shape[1])  # gain  = old / new
    pad = (input_shape[1] - output_shape[1] * gain) / 2, (input_shape[0] - output_shape[0] * gain) / 2  # wh padding
    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, output_shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, output_shape[0])  # y1, y2
    return boxes


def draw(image, box_data):
    box_data = scale_boxes(box_data, image.shape)
    boxes = box_data[...,:4].astype(np.int32) 
    scores = box_data[...,4]
    classes = box_data[...,5].astype(np.int32)
   
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
        cv2.putText(image, '{0} {1:.2f}'.format(class_names[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)


if __name__=="__main__":
    image = cv2.imread('bus.jpg', -1)
    input = letterbox(image, input_shape)
    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
    input = input / 255.0
    input_tensor = []
    input_tensor.append(input)
    
    onnx_session = onnxruntime.InferenceSession('rtdetr-l.onnx', providers=['CPUExecutionProvider', 'CUDAExecutionProvider'])
        
    input_name = []
    for node in onnx_session.get_inputs():
        input_name.append(node.name)

    output_name = []
    for node in onnx_session.get_outputs():
        output_name.append(node.name)

    inputs = {}
    for name in input_name:
        inputs[name] =  np.array(input_tensor)
  
    outputs = onnx_session.run(None, inputs)[0]
    
    boxes = filter_box(outputs)
    draw(image, boxes)
    cv2.imwrite('result.jpg', image)

tensorrt推理

python 复制代码
import cv2
import math
import numpy as np
import tensorrt as trt
import pycuda.autoinit 
import pycuda.driver as cuda 


class_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
        'hair drier', 'toothbrush'] #coco80类别 
input_shape = (640, 640) 
score_threshold = 0.5 
nms_threshold = 0.5


def nms(boxes, scores, score_threshold, nms_threshold):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    areas = (y2 - y1 + 1) * (x2 - x1 + 1)
    keep = []
    index = scores.argsort()[::-1] 

    while index.size > 0:
        i = index[0]
        keep.append(i)
        x11 = np.maximum(x1[i], x1[index[1:]]) 
        y11 = np.maximum(y1[i], y1[index[1:]])
        x22 = np.minimum(x2[i], x2[index[1:]])
        y22 = np.minimum(y2[i], y2[index[1:]])
        w = np.maximum(0, x22 - x11 + 1)                              
        h = np.maximum(0, y22 - y11 + 1) 
        overlaps = w * h
        ious = overlaps / (areas[i] + areas[index[1:]] - overlaps)
        idx = np.where(ious <= nms_threshold)[0]
        index = index[idx + 1]
    return keep


def xywh2xyxy(x):
    y = np.copy(x)
    y[:, 0] = x[:, 0] - x[:, 2] / 2
    y[:, 1] = x[:, 1] - x[:, 3] / 2
    y[:, 2] = x[:, 0] + x[:, 2] / 2
    y[:, 3] = x[:, 1] + x[:, 3] / 2
    return y


def filter_box(output): #过滤掉无用的框    
    output = np.squeeze(output)
     
    boxes = []
    scores = []
    class_ids = []    
    output = output[output[..., 4] > score_threshold] 
    for i in range(output.shape[0]):
        boxes.append(output[i, :6])
        scores.append(output[i][4])
        class_ids.append(output[i][5])  
            
    boxes = np.array(boxes)
    boxes = xywh2xyxy(boxes)
    boxes[..., [0, 2]] *= input_shape[0]
    boxes[..., [1, 3]] *= input_shape[1]
    return boxes

def letterbox(im, new_shape=(416, 416), color=(114, 114, 114)):
    # Resize and pad image while meeting stride-multiple constraints
    shape = im.shape[:2]  # current shape [height, width]

    # Scale ratio (new / old)
    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
    
    # Compute padding
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))    
    dw, dh = (new_shape[1] - new_unpad[0])/2, (new_shape[0] - new_unpad[1])/2  # wh padding 
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    
    if shape[::-1] != new_unpad:  # resize
        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
    return im


def scale_boxes(boxes, output_shape):
    # Rescale boxes (xyxy) from self.input_shape to shape
    gain = min(input_shape[0] / output_shape[0], input_shape[1] / output_shape[1])  # gain  = old / new
    pad = (input_shape[1] - output_shape[1] * gain) / 2, (input_shape[0] - output_shape[0] * gain) / 2  # wh padding
    boxes[..., [0, 2]] -= pad[0]  # x padding
    boxes[..., [1, 3]] -= pad[1]  # y padding
    boxes[..., :4] /= gain
    boxes[..., [0, 2]] = boxes[..., [0, 2]].clip(0, output_shape[1])  # x1, x2
    boxes[..., [1, 3]] = boxes[..., [1, 3]].clip(0, output_shape[0])  # y1, y2
    return boxes


def draw(image, box_data):
    box_data = scale_boxes(box_data, image.shape)
    boxes = box_data[...,:4].astype(np.int32) 
    scores = box_data[...,4]
    classes = box_data[...,5].astype(np.int32)
   
    for box, score, cl in zip(boxes, scores, classes):
        top, left, right, bottom = box
        cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 1)
        cv2.putText(image, '{0} {1:.2f}'.format(class_names[cl], score), (top, left), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 1)


if __name__=="__main__":
    logger = trt.Logger(trt.Logger.WARNING)
    with open("rtdetr-l.engine", "rb") as f, trt.Runtime(logger) as runtime:
        engine = runtime.deserialize_cuda_engine(f.read())
    context = engine.create_execution_context()
    inputs_host = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(0)), dtype=np.float32)
    outputs_host = cuda.pagelocked_empty(trt.volume(context.get_binding_shape(1)), dtype=np.float32)
    inputs_device = cuda.mem_alloc(inputs_host.nbytes)
    outputs_device = cuda.mem_alloc(outputs_host.nbytes)
    stream = cuda.Stream()
    
    image = cv2.imread('bus.jpg', -1)
    input = letterbox(image, input_shape)
    input = input[:, :, ::-1].transpose(2, 0, 1).astype(dtype=np.float32)  #BGR2RGB和HWC2CHW
    input = input / 255.0
    input = np.expand_dims(input, axis=0)     
    np.copyto(inputs_host, input.ravel())

    with engine.create_execution_context() as context:
        cuda.memcpy_htod_async(inputs_device, inputs_host, stream)
        context.execute_async_v2(bindings=[int(inputs_device), int(outputs_device)], stream_handle=stream.handle)
        cuda.memcpy_dtoh_async(outputs_host, outputs_device, stream)
        stream.synchronize()  
        boxes = filter_box(outputs_host.reshape(context.get_binding_shape(1)))
        draw(image, boxes)
        cv2.imwrite('result.jpg', image)
相关推荐
誉鏐9 分钟前
PyTorch复现线性模型
人工智能·pytorch·python
我要昵称干什么10 分钟前
基于S函数的simulink仿真
人工智能·算法
向上的车轮12 分钟前
NOA是什么?国内自动驾驶技术的现状是怎么样的?
人工智能·机器学习·自动驾驶
AndrewHZ35 分钟前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
Ai尚研修-贾莲36 分钟前
基于DeepSeek、ChatGPT支持下的地质灾害风险评估、易发性分析、信息化建库及灾后重建
人工智能·chatgpt
SelectDB技术团队1 小时前
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
大数据·数据库·数据仓库·人工智能·ai·数据分析·湖仓一体
weixin_435208161 小时前
通过 Markdown 改进 RAG 文档处理
人工智能·python·算法·自然语言处理·面试·nlp·aigc
大数据在线1 小时前
AI重塑云基础设施,亚马逊云科技打造AI定制版IaaS“样板房”
人工智能·云基础设施·ai大模型·亚马逊云科技
hello_ejb31 小时前
聊聊Spring AI的RetrievalAugmentationAdvisor
人工智能·spring·restful
你觉得2051 小时前
浙江大学朱霖潮研究员:《人工智能重塑科学与工程研究》以蛋白质结构预测为例|附PPT下载方法
大数据·人工智能·机器学习·ai·云计算·aigc·powerpoint