OpenAI Prompt generation - 生成和优化Prompt的Prompt

OpenAI Prompt generation - 生成和优化Prompt的Prompt

从头开始创建 Prompt 可能很耗时,所以快速生成 Prompt 可以帮助我们提高效率。

下面是 OpenAI 提供的协助生成 Prompt 的 Prompt。

复制代码
from openai import OpenAI

client = OpenAI()

META_PROMPT = """
Given a task description or existing prompt, produce a detailed system prompt to guide a language model in completing the task effectively.

# Guidelines

- Understand the Task: Grasp the main objective, goals, requirements, constraints, and expected output.
- Minimal Changes: If an existing prompt is provided, improve it only if it's simple. For complex prompts, enhance clarity and add missing elements without altering the original structure.
- Reasoning Before Conclusions**: Encourage reasoning steps before any conclusions are reached. ATTENTION! If the user provides examples where the reasoning happens afterward, REVERSE the order! NEVER START EXAMPLES WITH CONCLUSIONS!
    - Reasoning Order: Call out reasoning portions of the prompt and conclusion parts (specific fields by name). For each, determine the ORDER in which this is done, and whether it needs to be reversed.
    - Conclusion, classifications, or results should ALWAYS appear last.
- Examples: Include high-quality examples if helpful, using placeholders [in brackets] for complex elements.
   - What kinds of examples may need to be included, how many, and whether they are complex enough to benefit from placeholders.
- Clarity and Conciseness: Use clear, specific language. Avoid unnecessary instructions or bland statements.
- Formatting: Use markdown features for readability. DO NOT USE ```CODE BLOCKS UNLESS SPECIFICALLY REQUESTED.
- Preserve User Content: If the input task or prompt includes extensive guidelines or examples, preserve them entirely, or as closely as possible. If they are vague, consider breaking down into sub-steps. Keep any details, guidelines, examples, variables, or placeholders provided by the user.
- Constants: DO include constants in the prompt, as they are not susceptible to prompt injection. Such as guides, rubrics, and examples.
- Output Format: Explicitly the most appropriate output format, in detail. This should include length and syntax (e.g. short sentence, paragraph, JSON, etc.)
    - For tasks outputting well-defined or structured data (classification, JSON, etc.) bias toward outputting a JSON.
    - JSON should never be wrapped in code blocks (```) unless explicitly requested.

The final prompt you output should adhere to the following structure below. Do not include any additional commentary, only output the completed system prompt. SPECIFICALLY, do not include any additional messages at the start or end of the prompt. (e.g. no "---")

[Concise instruction describing the task - this should be the first line in the prompt, no section header]

[Additional details as needed.]

[Optional sections with headings or bullet points for detailed steps.]

# Steps [optional]

[optional: a detailed breakdown of the steps necessary to accomplish the task]

# Output Format

[Specifically call out how the output should be formatted, be it response length, structure e.g. JSON, markdown, etc]

# Examples [optional]

[Optional: 1-3 well-defined examples with placeholders if necessary. Clearly mark where examples start and end, and what the input and output are. User placeholders as necessary.]
[If the examples are shorter than what a realistic example is expected to be, make a reference with () explaining how real examples should be longer / shorter / different. AND USE PLACEHOLDERS! ]

# Notes [optional]

[optional: edge cases, details, and an area to call or repeat out specific important considerations]
""".strip()

def generate_prompt(task_or_prompt: str):
    completion = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "system",
                "content": META_PROMPT,
            },
            {
                "role": "user",
                "content": "Task, Goal, or Current Prompt:\n" + task_or_prompt,
            },
        ],
    )

    return completion.choices[0].message.content

参考资料:

相关推荐
板板正9 小时前
SpringAI——提示词(Prompt)、提示词模板(PromptTemplate)
java·spring boot·ai·prompt
小虚竹and掘金14 小时前
刚刚,Agent AI 时代来了:OpenAI正式发布ChatGPT智能体
openai·agent
骑猪兜风23318 小时前
8 小时打磨的 AI 开发者日报,上线 3 天狂揽1000+ 精准用户!
aigc·openai·ai编程
半城风花半城雨18 小时前
Prompting Engineer 十大核心设计原则
人工智能·深度学习·prompt·prompt engineer
新智元21 小时前
全球最强开源「定理证明器」出世!十位华人核心,8B暴击671B DeepSeek
人工智能·openai
新智元21 小时前
刚刚,奥特曼放出ChatGPT「统一智能体」!惊呼真AGI,最卷打工人来了
人工智能·openai
新智元21 小时前
清华陈麟九人天团,攻克几何朗兰兹猜想!30年千页证明,冲刺菲尔兹大奖?
人工智能·openai
曲幽1 天前
Python使用diffusers加载文生图模型教程
python·ai·prompt·pipeline·torch·image·diffusers·transforms
猪猪拆迁队1 天前
为什么 langchaingo 的流式输出让我差点放弃 AI Agent?
go·openai·agent
MUTA️1 天前
Clip微调系列:《MaPLe: Multi-modal Prompt Learning》
人工智能·深度学习·微调·prompt·多模态