OpenAI Prompt generation - 生成和优化Prompt的Prompt

OpenAI Prompt generation - 生成和优化Prompt的Prompt

从头开始创建 Prompt 可能很耗时,所以快速生成 Prompt 可以帮助我们提高效率。

下面是 OpenAI 提供的协助生成 Prompt 的 Prompt。

复制代码
from openai import OpenAI

client = OpenAI()

META_PROMPT = """
Given a task description or existing prompt, produce a detailed system prompt to guide a language model in completing the task effectively.

# Guidelines

- Understand the Task: Grasp the main objective, goals, requirements, constraints, and expected output.
- Minimal Changes: If an existing prompt is provided, improve it only if it's simple. For complex prompts, enhance clarity and add missing elements without altering the original structure.
- Reasoning Before Conclusions**: Encourage reasoning steps before any conclusions are reached. ATTENTION! If the user provides examples where the reasoning happens afterward, REVERSE the order! NEVER START EXAMPLES WITH CONCLUSIONS!
    - Reasoning Order: Call out reasoning portions of the prompt and conclusion parts (specific fields by name). For each, determine the ORDER in which this is done, and whether it needs to be reversed.
    - Conclusion, classifications, or results should ALWAYS appear last.
- Examples: Include high-quality examples if helpful, using placeholders [in brackets] for complex elements.
   - What kinds of examples may need to be included, how many, and whether they are complex enough to benefit from placeholders.
- Clarity and Conciseness: Use clear, specific language. Avoid unnecessary instructions or bland statements.
- Formatting: Use markdown features for readability. DO NOT USE ```CODE BLOCKS UNLESS SPECIFICALLY REQUESTED.
- Preserve User Content: If the input task or prompt includes extensive guidelines or examples, preserve them entirely, or as closely as possible. If they are vague, consider breaking down into sub-steps. Keep any details, guidelines, examples, variables, or placeholders provided by the user.
- Constants: DO include constants in the prompt, as they are not susceptible to prompt injection. Such as guides, rubrics, and examples.
- Output Format: Explicitly the most appropriate output format, in detail. This should include length and syntax (e.g. short sentence, paragraph, JSON, etc.)
    - For tasks outputting well-defined or structured data (classification, JSON, etc.) bias toward outputting a JSON.
    - JSON should never be wrapped in code blocks (```) unless explicitly requested.

The final prompt you output should adhere to the following structure below. Do not include any additional commentary, only output the completed system prompt. SPECIFICALLY, do not include any additional messages at the start or end of the prompt. (e.g. no "---")

[Concise instruction describing the task - this should be the first line in the prompt, no section header]

[Additional details as needed.]

[Optional sections with headings or bullet points for detailed steps.]

# Steps [optional]

[optional: a detailed breakdown of the steps necessary to accomplish the task]

# Output Format

[Specifically call out how the output should be formatted, be it response length, structure e.g. JSON, markdown, etc]

# Examples [optional]

[Optional: 1-3 well-defined examples with placeholders if necessary. Clearly mark where examples start and end, and what the input and output are. User placeholders as necessary.]
[If the examples are shorter than what a realistic example is expected to be, make a reference with () explaining how real examples should be longer / shorter / different. AND USE PLACEHOLDERS! ]

# Notes [optional]

[optional: edge cases, details, and an area to call or repeat out specific important considerations]
""".strip()

def generate_prompt(task_or_prompt: str):
    completion = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "system",
                "content": META_PROMPT,
            },
            {
                "role": "user",
                "content": "Task, Goal, or Current Prompt:\n" + task_or_prompt,
            },
        ],
    )

    return completion.choices[0].message.content

参考资料:

相关推荐
测试开发技术2 小时前
什么样的 prompt 是好的 prompt?
人工智能·ai·大模型·prompt
数据智能老司机6 小时前
使用 OpenAI Agents SDK 构建智能体——记忆与知识
llm·openai·agent
数据智能老司机6 小时前
使用 OpenAI Agents SDK 构建智能体——代理工具与 MCP
llm·openai·agent
爱喝白开水a17 小时前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱
cooldream200917 小时前
LangChain PromptTemplate 全解析:从模板化提示到智能链构
langchain·prompt·prompttemplate
serve the people17 小时前
LangChain 表达式语言核心组合:Prompt + LLM + OutputParser
java·langchain·prompt
Larcher1 天前
n8n 入门笔记:用零代码工作流自动化重塑效率边界
前端·openai
七牛云行业应用1 天前
从API调用到智能体编排:GPT-5时代的AI开发新模式
大数据·人工智能·gpt·openai·agent开发
知其然亦知其所以然1 天前
SpringAI让Java会画画?用Azure OpenAI生成AI图片太惊艳了!
后端·spring·openai