OpenAI Prompt generation - 生成和优化Prompt的Prompt

OpenAI Prompt generation - 生成和优化Prompt的Prompt

从头开始创建 Prompt 可能很耗时,所以快速生成 Prompt 可以帮助我们提高效率。

下面是 OpenAI 提供的协助生成 Prompt 的 Prompt。

from openai import OpenAI

client = OpenAI()

META_PROMPT = """
Given a task description or existing prompt, produce a detailed system prompt to guide a language model in completing the task effectively.

# Guidelines

- Understand the Task: Grasp the main objective, goals, requirements, constraints, and expected output.
- Minimal Changes: If an existing prompt is provided, improve it only if it's simple. For complex prompts, enhance clarity and add missing elements without altering the original structure.
- Reasoning Before Conclusions**: Encourage reasoning steps before any conclusions are reached. ATTENTION! If the user provides examples where the reasoning happens afterward, REVERSE the order! NEVER START EXAMPLES WITH CONCLUSIONS!
    - Reasoning Order: Call out reasoning portions of the prompt and conclusion parts (specific fields by name). For each, determine the ORDER in which this is done, and whether it needs to be reversed.
    - Conclusion, classifications, or results should ALWAYS appear last.
- Examples: Include high-quality examples if helpful, using placeholders [in brackets] for complex elements.
   - What kinds of examples may need to be included, how many, and whether they are complex enough to benefit from placeholders.
- Clarity and Conciseness: Use clear, specific language. Avoid unnecessary instructions or bland statements.
- Formatting: Use markdown features for readability. DO NOT USE ```CODE BLOCKS UNLESS SPECIFICALLY REQUESTED.
- Preserve User Content: If the input task or prompt includes extensive guidelines or examples, preserve them entirely, or as closely as possible. If they are vague, consider breaking down into sub-steps. Keep any details, guidelines, examples, variables, or placeholders provided by the user.
- Constants: DO include constants in the prompt, as they are not susceptible to prompt injection. Such as guides, rubrics, and examples.
- Output Format: Explicitly the most appropriate output format, in detail. This should include length and syntax (e.g. short sentence, paragraph, JSON, etc.)
    - For tasks outputting well-defined or structured data (classification, JSON, etc.) bias toward outputting a JSON.
    - JSON should never be wrapped in code blocks (```) unless explicitly requested.

The final prompt you output should adhere to the following structure below. Do not include any additional commentary, only output the completed system prompt. SPECIFICALLY, do not include any additional messages at the start or end of the prompt. (e.g. no "---")

[Concise instruction describing the task - this should be the first line in the prompt, no section header]

[Additional details as needed.]

[Optional sections with headings or bullet points for detailed steps.]

# Steps [optional]

[optional: a detailed breakdown of the steps necessary to accomplish the task]

# Output Format

[Specifically call out how the output should be formatted, be it response length, structure e.g. JSON, markdown, etc]

# Examples [optional]

[Optional: 1-3 well-defined examples with placeholders if necessary. Clearly mark where examples start and end, and what the input and output are. User placeholders as necessary.]
[If the examples are shorter than what a realistic example is expected to be, make a reference with () explaining how real examples should be longer / shorter / different. AND USE PLACEHOLDERS! ]

# Notes [optional]

[optional: edge cases, details, and an area to call or repeat out specific important considerations]
""".strip()

def generate_prompt(task_or_prompt: str):
    completion = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "system",
                "content": META_PROMPT,
            },
            {
                "role": "user",
                "content": "Task, Goal, or Current Prompt:\n" + task_or_prompt,
            },
        ],
    )

    return completion.choices[0].message.content

参考资料:

相关推荐
hunteritself32 分钟前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
新智元8 小时前
LeCun 八年前神预言,大模型路线再颠覆?OpenAI 宣告:强化学习取得稳定性突破
人工智能·openai
程序员小灰1 天前
OpenAI正式发布o3:通往AGI的路上,已经没有了任何阻碍
人工智能·aigc·openai
SomeB1oody2 天前
获取OpenAI官方给ChatGPT的系统定义Prompt
人工智能·语言模型·chatgpt·prompt
旷野..2 天前
GPT 时代,精进编程思维 + 熟练 Prompt 是否是新的编程范式?
python·gpt·prompt
AIzealot无2 天前
论文解读之Chain-of-Thought Prompting Elicits Reasoning in Large Language Models(CoT)
人工智能·语言模型·自然语言处理·prompt·提示词
that's boy2 天前
ChatGPT Search开放:实时多模态搜索新体验
人工智能·gpt·chatgpt·openai·midjourney
confiself3 天前
大模型系列——投机解码:Prompt Lookup Decoding代码解读
prompt
杨过过儿3 天前
【Prompt Engineering】7 聊天机器人
人工智能·机器人·prompt
学习前端的小z3 天前
【AIGC】ChatGPT 结构化 Prompt 的高级应用
chatgpt·prompt·aigc