OpenAI Prompt generation - 生成和优化Prompt的Prompt

OpenAI Prompt generation - 生成和优化Prompt的Prompt

从头开始创建 Prompt 可能很耗时,所以快速生成 Prompt 可以帮助我们提高效率。

下面是 OpenAI 提供的协助生成 Prompt 的 Prompt。

复制代码
from openai import OpenAI

client = OpenAI()

META_PROMPT = """
Given a task description or existing prompt, produce a detailed system prompt to guide a language model in completing the task effectively.

# Guidelines

- Understand the Task: Grasp the main objective, goals, requirements, constraints, and expected output.
- Minimal Changes: If an existing prompt is provided, improve it only if it's simple. For complex prompts, enhance clarity and add missing elements without altering the original structure.
- Reasoning Before Conclusions**: Encourage reasoning steps before any conclusions are reached. ATTENTION! If the user provides examples where the reasoning happens afterward, REVERSE the order! NEVER START EXAMPLES WITH CONCLUSIONS!
    - Reasoning Order: Call out reasoning portions of the prompt and conclusion parts (specific fields by name). For each, determine the ORDER in which this is done, and whether it needs to be reversed.
    - Conclusion, classifications, or results should ALWAYS appear last.
- Examples: Include high-quality examples if helpful, using placeholders [in brackets] for complex elements.
   - What kinds of examples may need to be included, how many, and whether they are complex enough to benefit from placeholders.
- Clarity and Conciseness: Use clear, specific language. Avoid unnecessary instructions or bland statements.
- Formatting: Use markdown features for readability. DO NOT USE ```CODE BLOCKS UNLESS SPECIFICALLY REQUESTED.
- Preserve User Content: If the input task or prompt includes extensive guidelines or examples, preserve them entirely, or as closely as possible. If they are vague, consider breaking down into sub-steps. Keep any details, guidelines, examples, variables, or placeholders provided by the user.
- Constants: DO include constants in the prompt, as they are not susceptible to prompt injection. Such as guides, rubrics, and examples.
- Output Format: Explicitly the most appropriate output format, in detail. This should include length and syntax (e.g. short sentence, paragraph, JSON, etc.)
    - For tasks outputting well-defined or structured data (classification, JSON, etc.) bias toward outputting a JSON.
    - JSON should never be wrapped in code blocks (```) unless explicitly requested.

The final prompt you output should adhere to the following structure below. Do not include any additional commentary, only output the completed system prompt. SPECIFICALLY, do not include any additional messages at the start or end of the prompt. (e.g. no "---")

[Concise instruction describing the task - this should be the first line in the prompt, no section header]

[Additional details as needed.]

[Optional sections with headings or bullet points for detailed steps.]

# Steps [optional]

[optional: a detailed breakdown of the steps necessary to accomplish the task]

# Output Format

[Specifically call out how the output should be formatted, be it response length, structure e.g. JSON, markdown, etc]

# Examples [optional]

[Optional: 1-3 well-defined examples with placeholders if necessary. Clearly mark where examples start and end, and what the input and output are. User placeholders as necessary.]
[If the examples are shorter than what a realistic example is expected to be, make a reference with () explaining how real examples should be longer / shorter / different. AND USE PLACEHOLDERS! ]

# Notes [optional]

[optional: edge cases, details, and an area to call or repeat out specific important considerations]
""".strip()

def generate_prompt(task_or_prompt: str):
    completion = client.chat.completions.create(
        model="gpt-4o",
        messages=[
            {
                "role": "system",
                "content": META_PROMPT,
            },
            {
                "role": "user",
                "content": "Task, Goal, or Current Prompt:\n" + task_or_prompt,
            },
        ],
    )

    return completion.choices[0].message.content

参考资料:

相关推荐
cheungxiongwei.com6 小时前
使用 C++23 实现 Prompt DSL 的 Header-Only 解析器:从语法设计到工程落地
prompt·c++23
shangjian0078 小时前
AI-大语言模型LLM-模型微调3-Prompt Tuning
人工智能·语言模型·prompt
Bruk.Liu1 天前
AI中的Agent、Prompt、MCP与Function Calling:从简单对话到智能执行
人工智能·prompt·mcp
猫头虎2 天前
中国开源大模型霸榜全球:全球开源大模型排行榜前十五名,全部由中国模型占据
langchain·开源·prompt·aigc·ai编程·agi·ai-native
坠金2 天前
prompt
prompt
特立独行的猫a2 天前
2026国内外主流大模型全景对比:技术演进与场景适配深度解析
ai·大模型·llm·openai
花间相见3 天前
【LangChain】—— Prompt、Model、Chain与多模型执行链
前端·langchain·prompt
qiukapi3 天前
四. Model I/O 之 Prompt Template
prompt·prompttemplate
wowo wowola3 天前
OpenAI 核心模型核心贡献者---翁家翌访谈
openai
Familyism3 天前
Prompt概述
prompt