图论day62|拓扑排序理论基础、117.软件构建(卡码网)、最短路径之dijkstra理论基、47.参加科学大会(卡码网 第六期模拟笔试)

图论day62|拓扑排序理论基础、117.软件构建(卡码网)、最短路径之dijkstra理论基、47.参加科学大会(卡码网 第六期模拟笔试)

拓扑排序理论基础

117.软件构建(卡码网)

题目描述

某个大型软件项目的构建系统拥有 N 个文件,文件编号从 0 到 N - 1,在这些文件中,某些文件依赖于其他文件的内容,这意味着如果文件 A 依赖于文件 B,则必须在处理文件 A 之前处理文件 B (0 <= A, B <= N - 1)。请编写一个算法,用于确定文件处理的顺序。

输入描述

第一行输入两个正整数 N, M。表示 N 个文件之间拥有 M 条依赖关系。

后续 M 行,每行两个正整数 S 和 T,表示 T 文件依赖于 S 文件。

输出描述

输出共一行,如果能处理成功,则输出文件顺序,用空格隔开。

如果不能成功处理(相互依赖),则输出 -1。

输入示例

5 4
0 1
0 2
1 3
2 4

输出示例

0 1 2 3 4

提示信息

文件依赖关系如下:

所以,文件处理的顺序除了示例中的顺序,还存在

0 2 4 1 3

0 2 1 3 4

等等合法的顺序。

数据范围:

0 <= N <= 10 ^ 5

1 <= M <= 10 ^ 9

每行末尾无空格。

cpp 复制代码
#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>
using namespace std;

int main()
{
    int n,m,s,t;
    cin>>n>>m;
    vector<int> result;

    vector<int> inDegree(n,0);
    unordered_map<int,vector<int>> map;

    for(int i=0;i<m;i++)
    {
        cin>>s>>t;
        inDegree[t]++;
        map[s].push_back(t);
    }

    queue<int> que;
    for(int i=0;i<n;i++)
    {
        if(inDegree[i]==0)
            que.push(i);
    }

    while(!que.empty())
    {
        int cur=que.front();
        que.pop();
        result.push_back(cur);
        vector<int> next=map[cur];
        if(!next.empty())
            for(int i=0;i<next.size();i++)
            {
                inDegree[next[i]]--;
                if(inDegree[next[i]]==0)
                    que.push(next[i]);
            }
    }
    if(result.size()==n)
    {
        for(int i=0;i<n-1;i++)
            cout<<result[i]<<" ";
        cout<<result[n-1];
    }
    else
        cout<<-1;
}

最短路径之dijkstra理论基础

47.参加科学大会(卡码网 第六期模拟笔试)

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。

小明的起点是第一个车站,终点是最后一个车站。然而,途中的各个车站之间的道路状况、交通拥堵程度以及可能的自然因素(如天气变化)等不同,这些因素都会影响每条路径的通行时间。

小明希望能选择一条花费时间最少的路线,以确保他能够尽快到达目的地。

输入描述

第一行包含两个正整数,第一个正整数 N 表示一共有 N 个公共汽车站,第二个正整数 M 表示有 M 条公路。

接下来为 M 行,每行包括三个整数,S、E 和 V,代表了从 S 车站可以单向直达 E 车站,并且需要花费 V 单位的时间。

输出描述

输出一个整数,代表小明从起点到终点所花费的最小时间。

输入示例

7 9
1 2 1
1 3 4
2 3 2
2 4 5
3 4 2
4 5 3
2 6 4
5 7 4
6 7 9

输出示例

12

提示信息

能够到达的情况:

如下图所示,起始车站为 1 号车站,终点车站为 7 号车站,绿色路线为最短的路线,路线总长度为 12,则输出 12。

不能到达的情况:

如下图所示,当从起始车站不能到达终点车站时,则输出 -1。

数据范围:

1 <= N <= 500;

1 <= M <= 5000;

cpp 复制代码
#include <iostream>
#include <vector>
#include <climits>
using namespace std;

int main()
{
    int n,m,s,e,val;
    cin>>n>>m;
    vector<vector<int>> grid(n+1,vector<int>(n+1,INT_MAX));
    for(int i=0;i<m;i++)
    {
        cin>>s>>e>>val;
        grid[s][e]=val;
    }

    vector<bool> visited(n+1,false);
    vector<int> minDist(n+1,INT_MAX);

    minDist[1]=0;

    for(int i=1;i<=n;i++)
    {

        int minVal=INT_MAX;
        int cur=1;

        for(int j=1;j<=n;j++)
        {
            if(!visited[j]&&minDist[j]<minVal)
            {
                minVal=minDist[j];
                cur=j;
            }
        }

        visited[cur]=true;

        for(int j=1;j<=n;j++)
        {
            if(!visited[j]&&grid[cur][j]!=INT_MAX&&minDist[cur]+grid[cur][j]<minDist[j])
                minDist[j]= minDist[cur] + grid[cur][j];
        }
    }

    if(minDist[n]==INT_MAX)
        cout<<-1<<endl;
    else
        cout<<minDist[n]<<endl;
}
相关推荐
小王爱吃月亮糖42 分钟前
C++进阶-1-单继承、多继承、虚继承
开发语言·c++·笔记·学习·visual studio
Am心若依旧4091 小时前
[c++进阶(三)]单例模式及特殊类的设计
java·c++·单例模式
小王爱吃月亮糖1 小时前
补充--C++的项目结构和管理
数据结构·c++·笔记·学习
因特麦克斯1 小时前
如何实现对象的克隆?如何实现单例模式?
c++·单例模式
2401_834481991 小时前
Day50 图论part01
图论
Crazy learner2 小时前
C 和 C++ 动态库的跨语言调用原理
c语言·c++
金士顿5 小时前
MFC 文档模板 每个文档模板需要实例化吧
c++·mfc
人才程序员8 小时前
QML z轴(z-order)前后层级
c语言·前端·c++·qt·软件工程·用户界面·界面
w(゚Д゚)w吓洗宝宝了8 小时前
C vs C++: 一场编程语言的演变与对比
c语言·开发语言·c++
小老鼠不吃猫10 小时前
C++点云大文件读取
开发语言·c++