【C++】二叉搜索树

🔥个人主页🔥:孤寂大仙V

🌈收录专栏🌈:C++从小白到高手

🌹往期回顾🌹:【C++】多态

🔖 流水不争,争的是滔滔不息

文章目录


一、二叉搜索树的概念

二叉搜索树(Binary Search Tree, BST)又称二叉排序树是一种二叉树,满足以下性质:

  1. 节点的左子树上所有节点的值都小于该节点的值。
  2. 节点的右子树上所有节点的值都大于该节点的值。
  3. 左右子树也必须是二叉搜索树(递归定义)。

⼆叉搜索树中可以⽀持插⼊相等的值,也可以不⽀持插⼊相等的值,具体看使⽤场景定义,后续我

们学习map/set/multimap/multiset系列容器底层就是⼆叉搜索树,其中map/set不⽀持插⼊相等

值,multimap/multiset⽀持插⼊相等值。

二、搜索二叉树的操作

二叉搜索树的插入

  1. 树为空,则直接新增结点,赋值给root指针
  2. 树不空,按⼆叉搜索树性质,插⼊值⽐当前结点⼤往右⾛,插⼊值⽐当前结点⼩往左⾛,找到空位置,插⼊新结点。
  3. 如果⽀持插⼊相等的值,插⼊值跟当前结点相等的值可以往右⾛,也可以往左⾛,找到空位置,插⼊新结点。(要注意的是要保持逻辑⼀致性,插⼊相等的值不要⼀会往右⾛,⼀会往左⾛)
cpp 复制代码
bool Insert(const K& key)
{
	if (_root == nullptr)
	{
		// 如果树为空,直接创建根节点。
		_root = new Node(key);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;

	// 找到适合的插入位置。
	while (cur)
	{
		if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			// 如果发现相同的键值,则插入失败。
			return false;
		}
	}

	// 创建新节点并插入到合适的位置。
	cur = new Node(key);
	if (parent->_key > key)
	{
		parent->_left = cur;
	}
	else
	{
		parent->_right = cur;
	}

	return true;
}

二叉搜索树的查找

  1. 从根开始⽐较,查找x,x⽐根的值⼤则往右边⾛查找,x⽐根值⼩则往左边⾛查找。
  2. 最多查找⾼度次,⾛到到空,还没找到,这个值不存在。
  3. 如果不⽀持插⼊相等的值,找到x即可返回。
  4. 如果⽀持插⼊相等的值,意味着有多个x存在,⼀般要求查找中序的第⼀个x。如下图,查找3,要找到1的右孩⼦的那个3返回。
cpp 复制代码
bool Find(const K& key)
{
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key < key)
		{
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			cur = cur->_left;
		}
		else
		{
			return true;
		}
	}

	return false;
}

二叉搜索树的删除

⾸先查找元素是否在⼆叉搜索树中,如果不存在,则返回false。

如果查找元素存在则分以下四种情况分别处理:(假设要删除的结点为N)

1. 要删除结点N左右孩⼦均为空
2. 要删除的结点N左孩⼦位空,右孩⼦结点不为空
3. 要删除的结点N右孩⼦位空,左孩⼦结点不为空
4. 要删除的结点N左右孩⼦结点均不为空

对应以上四种情况的解决⽅案:

  1. 把N结点的⽗亲对应孩⼦指针指向空,直接删除N结点(情况1可以当成2或者3处理,效果是⼀样的)
  2. 把N结点的⽗亲对应孩⼦指针指向N的右孩⼦,直接删除N结点
  3. 把N结点的⽗亲对应孩⼦指针指向N的左孩⼦,直接删除N结点
  4. ⽆法直接删除N结点,因为N的两个孩⼦⽆处安放,只能⽤替换法删除。找N左⼦树的值最⼤结点R(最右结点)或者N右⼦树的值最⼩结点R(最左结点)替代N,因为这两个结点中任意⼀个,放到N的位置,都满⾜⼆叉搜索树的规则。替代N的意思就是N和R的两个结点的值交换,转⽽变成删除R结点,R结点符合情况2或情况3,可以直接删除。
cpp 复制代码
bool Erase(const K& key)
{
	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_key < key)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (cur->_key > key)
		{
			parent = cur;
			cur = cur->_left;
		}
		else
		{
			if (cur->_left == nullptr)
			{
				if (cur == _root)
				{
					_root = cur->_right;
				}
				else
				{
					if (parent->_left == cur)
					{
						parent->_left = cur->_right;
					}
					else
					{
						parent->_right = cur->_right;
					}
				}

				delete cur;

			}
			else if (cur->_right == nullptr)
			{
				if (cur == _root)
				{
					_root = cur->_left;
				}
				else
				{
					if (parent->_left == cur)
					{
						parent->_left = cur->_left;
					}
					else
					{
						parent->_right = cur->_left;
					}
				}
				delete cur;
			}
			else
			{
				Node* replaceParent = cur;
				Node* replace = cur->_right;
				while (replace->_left)
				{
					replaceParent = replace;
					replace = replace->_left;
				}

				cur->_key = replace->_key;

				if (replaceParent->_left == replace)
					replaceParent->_left = replace->_right;
				else
					replaceParent->_right = replace->_right;

				delete replace;
			}
			return true;
		}
	}

	return false;
}

三、二叉搜索树的性能分析

那么这样的效率显然是⽆法满⾜我们需求的,我们后续课程需要继续讲解⼆叉搜索树的变形,平衡⼆叉搜索树AVL树和红⿊树,才能适⽤于我们在内存中存储和搜索数据。

四、二叉搜索树的实现代码

cpp 复制代码
#include<iostream>
using namespace std;
namespace key
{
	template<class K>
	struct BSNode
	{
		K _key;
		BSNode<K>* _left;
		BSNode<K>* _right;

		BSNode(const K& key)
			: _key(key)
			, _left(nullptr)
			, _right(nullptr)
		{}		
	};

	template<class K>
	
	class BSTree
	{
		using Node = BSNode<K>;
	public:
		//插入
		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				// 如果树为空,直接创建根节点。
				_root = new Node(key);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;

			// 找到适合的插入位置。
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					// 如果发现相同的键值,则插入失败。
					return false;
				}
			}

			// 创建新节点并插入到合适的位置。
			cur = new Node(key);
			if (parent->_key > key)
			{
				parent->_left = cur;
			}
			else
			{
				parent->_right = cur;
			}

			return true;
		}

		bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return true;
				}
			}

			return false;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (parent->_left == cur)
							{
								parent->_left = cur->_right;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}

						delete cur;

					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							if (parent->_left == cur)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_left;
							}
						}
						delete cur;
					}
					else
					{
						Node* replaceParent = cur;
						Node* replace = cur->_right;
						while (replace->_left)
						{
							replaceParent = replace;
							replace = replace->_left;
						}

						cur->_key = replace->_key;

						if (replaceParent->_left == replace)
							replaceParent->_left = replace->_right;
						else
							replaceParent->_right = replace->_right;

						delete replace;
					}
					return true;
				}
			}

			return false;
		}
		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}
	private:

		void _InOrder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}

			_InOrder(root->_left);
			cout << root->_key << " ";
			_InOrder(root->_right);
		}

	private:
		Node* _root = nullptr;

	};
}

五、二叉搜索树key和key/value使用场景

key搜索场景

只有key作为关键码,结构中只需要存储key即可,关键码即为需要搜索到的值,搜索场景只需要判断key在不在。key的搜索场景实现的⼆叉树搜索树⽀持增删查,但是不⽀持修改,修改key就破坏搜索树结构了

场景1:⼩区⽆⼈值守⻋库,⼩区⻋库买了⻋位的业主⻋才能进⼩区,那么物业会把买了⻋位的业主的⻋牌号录⼊后台系统,⻋辆进⼊时扫描⻋牌在不在系统中,在则抬杆,不在则提⽰⾮本⼩区⻋辆,⽆法进⼊。

场景2:检查⼀篇英⽂⽂章单词拼写是否正确,将词库中所有单词放⼊⼆叉搜索树,读取⽂章中的单词,查找是否在⼆叉搜索树中,不在则波浪线标红提⽰。

key/value搜索场景:

每⼀个关键码key,都有与之对应的值value,value可以任意类型对象 。树的结构中(结点)除了需要存储key还要存储对应的value,增/删/查还是以key为关键字⾛⼆叉搜索树的规则进⾏⽐较,可以快速查找到key对应的value。key/value的搜索场景实现的⼆叉树搜索树⽀持修改,但是不⽀持修改key,修改key破坏搜索树结构了,可以修改value

场景1:简单中英互译字典,树的结构中(结点)存储key(英⽂)和vlaue(中⽂),搜索时输⼊英⽂,则同时查找到了英⽂对应的中⽂。

场景2:商场⽆⼈值守⻋库,⼊⼝进场时扫描⻋牌,记录⻋牌和⼊场时间,出⼝离场时,扫描⻋牌,查找⼊场时间,⽤当前时间-⼊场时间计算出停⻋时⻓,计算出停⻋费⽤,缴费后抬杆,⻋辆离场。

场景3:统计⼀篇⽂章中单词出现的次数,读取⼀个单词,查找单词是否存在,不存在这个说明第⼀次出现,(单词,1),单词存在,则++单词对应的次数。

六、key/value⼆叉搜索树代码实现

cpp 复制代码
namespace key_value
{
	template<class K, class V>
	struct BSTNode
	{
		K _key;
		V _value;

		BSTNode<K, V>* _left;
		BSTNode<K, V>* _right;

		BSTNode(const K& key, const V& value)
			:_key(key)
			, _value(value)
			, _left(nullptr)
			, _right(nullptr)
		{}
	};

	// Binary Search Tree
	// Key/value
	template<class K, class V>
	class BSTree
	{
		//typedef BSTNode<K> Node;
		using Node = BSTNode<K, V>;
	public:
		// 强制生成构造
		BSTree() = default;

		BSTree(const BSTree& t)
		{
			_root = Copy(t._root);
		}

		BSTree& operator=(BSTree tmp)
		{
			swap(_root, tmp._root);
			return *this;
		}

		~BSTree()
		{
			Destroy(_root);
			_root = nullptr;
		}

		bool Insert(const K& key, const V& value)
		{
			if (_root == nullptr)
			{
				_root = new Node(key, value);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;

			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key, value);
			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}

			return true;
		}

		Node* Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return cur;
				}
			}

			return nullptr;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;

			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					// 删除
					// 左为空
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (parent->_left == cur)
							{
								parent->_left = cur->_right;
							}
							else
							{
								parent->_right = cur->_right;
							}
						}
						delete cur;

					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							// 右为空
							if (parent->_left == cur)
							{
								parent->_left = cur->_left;
							}
							else
							{
								parent->_right = cur->_left;
							}
						}

						delete cur;

					}
					else
					{
						// 左右都不为空
						// 右子树最左节点
						Node* replaceParent = cur;
						Node* replace = cur->_right;
						while (replace->_left)
						{
							replaceParent = replace;
							replace = replace->_left;
						}

						cur->_key = replace->_key;

						if (replaceParent->_left == replace)
							replaceParent->_left = replace->_right;
						else
							replaceParent->_right = replace->_right;

						delete replace;
					}

					return true;
				}
			}

			return false;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}
	private:
		void _InOrder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}

			_InOrder(root->_left);
			cout << root->_key << ":" << root->_value << endl;
			_InOrder(root->_right);
		}

		void Destroy(Node* root)
		{
			if (root == nullptr)
				return;

			Destroy(root->_left);
			Destroy(root->_right);
			delete root;
		}

		Node* Copy(Node* root)
		{
			if (root == nullptr)
				return nullptr;

			Node* newRoot = new Node(root->_key, root->_value);
			newRoot->_left = Copy(root->_left);
			newRoot->_right = Copy(root->_right);
			return newRoot;
		}
	private:
		Node* _root = nullptr;
	};
}
相关推荐
守护者17015 分钟前
JAVA学习-练习试用Java实现“使用Arrays.toString方法将数组转换为字符串并打印出来”
java·学习
源码哥_博纳软云17 分钟前
JAVA同城服务场馆门店预约系统支持H5小程序APP源码
java·开发语言·微信小程序·小程序·微信公众平台
禾高网络18 分钟前
租赁小程序成品|租赁系统搭建核心功能
java·人工智能·小程序
学会沉淀。24 分钟前
Docker学习
java·开发语言·学习
如若12325 分钟前
对文件内的文件名生成目录,方便查阅
java·前端·python
ragnwang41 分钟前
C++ Eigen常见的高级用法 [学习笔记]
c++·笔记·学习
西猫雷婶1 小时前
python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶
开发语言·python·opencv
kiiila1 小时前
【Qt】对象树(生命周期管理)和字符集(cout打印乱码问题)
开发语言·qt
初晴~1 小时前
【Redis分布式锁】高并发场景下秒杀业务的实现思路(集群模式)
java·数据库·redis·分布式·后端·spring·
小_太_阳1 小时前
Scala_【2】变量和数据类型
开发语言·后端·scala·intellij-idea