什么是AUC?详解

目录

什么是AUC?

图片来源:https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

AUC(Area Under the ROC Curve)是一种用于评估二分类模型性能的指标 ,表示ROC曲线下的面积 。ROC(Receiver Operating Characteristic)曲线是一种以 False Positive Rate(FPR)为横坐标True Positive Rate(TPR)为纵坐标的曲线

F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP

T P R = T P T P + F N = R e c a l l TPR=\frac{TP}{TP+FN}=Recall TPR=TP+FNTP=Recall

在二分类问题中,TPR 表示正样本被正确预测为正样本的比例,即 Recall;FPR 则表示负样本被错误预测为正样本的比例。AUC 越大,说明分类器性能越好;AUC = 0.5,则说明分类器性能等同于随机分类。

在样本全为 TP(TN) 的情况下,由于 FPR(TPR) 无法计算,因此 ROC 曲线无法绘制,AUC(Area Under the ROC Curve)无法计算。

AUC 具有以下优点

  1. AUC 不受分类器的阈值选择影响,因此对于不同的分类器比较性能更具有普适性。
  2. AUC 可以很好地应用于样本不平衡的情况,即当负样本比正样本多得多时,仍能准确评估分类器性能。
  3. AUC 的计算方法简单,只需要对 ROC 曲线下的面积进行计算即可。

如果觉得这篇文章有用,就给个 👍和收藏⭐️吧!也欢迎在评论区分享你的看法!


参考

相关推荐
之歆6 小时前
Spring AI入门到实战到原理源码-MCP
java·人工智能·spring
知乎的哥廷根数学学派6 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
且去填词6 小时前
DeepSeek :基于 Schema 推理与自愈机制的智能 ETL
数据仓库·人工智能·python·语言模型·etl·schema·deepseek
待续3016 小时前
订阅了 Qoder 之后,我想通过这篇文章分享一些个人使用心得和感受。
人工智能
weixin_397578026 小时前
人工智能发展历史
人工智能
数字化转型20256 小时前
企业数字化架构集成能力建设
大数据·程序人生·机器学习
强盛小灵通专卖员7 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
OidEncoder7 小时前
从 “粗放清扫” 到 “毫米级作业”,编码器重塑环卫机器人新能力
人工智能·自动化·智慧城市
Hcoco_me7 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
阿部多瑞 ABU7 小时前
`chenmo` —— 可编程元叙事引擎 V2.3+
linux·人工智能·python·ai写作