什么是AUC?详解

目录

什么是AUC?

图片来源:https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

AUC(Area Under the ROC Curve)是一种用于评估二分类模型性能的指标 ,表示ROC曲线下的面积 。ROC(Receiver Operating Characteristic)曲线是一种以 False Positive Rate(FPR)为横坐标True Positive Rate(TPR)为纵坐标的曲线

F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP

T P R = T P T P + F N = R e c a l l TPR=\frac{TP}{TP+FN}=Recall TPR=TP+FNTP=Recall

在二分类问题中,TPR 表示正样本被正确预测为正样本的比例,即 Recall;FPR 则表示负样本被错误预测为正样本的比例。AUC 越大,说明分类器性能越好;AUC = 0.5,则说明分类器性能等同于随机分类。

在样本全为 TP(TN) 的情况下,由于 FPR(TPR) 无法计算,因此 ROC 曲线无法绘制,AUC(Area Under the ROC Curve)无法计算。

AUC 具有以下优点

  1. AUC 不受分类器的阈值选择影响,因此对于不同的分类器比较性能更具有普适性。
  2. AUC 可以很好地应用于样本不平衡的情况,即当负样本比正样本多得多时,仍能准确评估分类器性能。
  3. AUC 的计算方法简单,只需要对 ROC 曲线下的面积进行计算即可。

如果觉得这篇文章有用,就给个 👍和收藏⭐️吧!也欢迎在评论区分享你的看法!


参考

相关推荐
夏天是冰红茶33 分钟前
DINO原理详解
人工智能·深度学习·机器学习
吴佳浩3 小时前
Python入门指南(六) - 搭建你的第一个YOLO检测API
人工智能·后端·python
SHIPKING3933 小时前
【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
人工智能
yong99904 小时前
基于SIFT特征提取与匹配的MATLAB图像拼接
人工智能·计算机视觉·matlab
知秋一叶1234 小时前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
春日见4 小时前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
————A5 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR5 小时前
每周AI论文速递(251215-251219)
人工智能
weixin_409383125 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
长桥夜波5 小时前
【第二十四周】文献阅读-第一人称下的手势识别(1)
机器学习