什么是AUC?详解

目录

什么是AUC?

图片来源:https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5

AUC(Area Under the ROC Curve)是一种用于评估二分类模型性能的指标 ,表示ROC曲线下的面积 。ROC(Receiver Operating Characteristic)曲线是一种以 False Positive Rate(FPR)为横坐标True Positive Rate(TPR)为纵坐标的曲线

F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP

T P R = T P T P + F N = R e c a l l TPR=\frac{TP}{TP+FN}=Recall TPR=TP+FNTP=Recall

在二分类问题中,TPR 表示正样本被正确预测为正样本的比例,即 Recall;FPR 则表示负样本被错误预测为正样本的比例。AUC 越大,说明分类器性能越好;AUC = 0.5,则说明分类器性能等同于随机分类。

在样本全为 TP(TN) 的情况下,由于 FPR(TPR) 无法计算,因此 ROC 曲线无法绘制,AUC(Area Under the ROC Curve)无法计算。

AUC 具有以下优点

  1. AUC 不受分类器的阈值选择影响,因此对于不同的分类器比较性能更具有普适性。
  2. AUC 可以很好地应用于样本不平衡的情况,即当负样本比正样本多得多时,仍能准确评估分类器性能。
  3. AUC 的计算方法简单,只需要对 ROC 曲线下的面积进行计算即可。

如果觉得这篇文章有用,就给个 👍和收藏⭐️吧!也欢迎在评论区分享你的看法!


参考

相关推荐
vocal17 分钟前
谷歌第七版Prompt Engineering—第一部分
人工智能
MonkeyKing_sunyuhua18 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
arbboter26 分钟前
【AI插件开发】Notepad++ AI插件开发1.0发布和使用说明
人工智能·大模型·notepad++·ai助手·ai插件·aicoder·notepad++插件开发
IT_Octopus38 分钟前
AI工程pytorch小白TorchServe部署模型服务
人工智能·pytorch·python
果冻人工智能43 分钟前
AI军备竞赛:我们是不是正在造一个无法控制的神?
人工智能
暴龙胡乱写博客1 小时前
OpenCV---图像预处理(四)
人工智能·opencv·计算机视觉
程序员辣条1 小时前
深度测评 RAG 应用评估框架:指标最全面的 RAGas
人工智能·程序员
curdcv_po1 小时前
字节跳动Trae:一款革命性的免费AI编程工具完全评测
人工智能·trae
程序员辣条1 小时前
为什么需要提示词工程?什么是提示词工程(prompt engineering)?为什么需要提示词工程?收藏我这一篇就够了!
人工智能·程序员·产品经理
孔令飞1 小时前
Go:终于有了处理未定义字段的实用方案
人工智能·云原生·go