买卖股票的最佳时机总结(动态规划)

买卖最佳股票时机I

复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        //dp[i][0]是持有股份的最大现金, dp[i][1]是不持有股份的最大现金
        if(prices.size() == 0)  return 0;
        vector<vector<int> > dp(prices.size() + 1, vector<int>(2));
        dp[0][0] = dp[0][0] - prices[0];
        dp[0][1] = 0;
        for(int i = 1; i < prices.size(); i++)
        {
            dp[i][0] = max(dp[i - 1][0], - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[prices.size() - 1][1];
    }
};

这个其实我们就把这个拆分成两个状态就好,这个就可以直接通过状态转移去推到出来

买卖最佳股票时机II

复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        //dp[i][0]是持有股份的最大现金, dp[i][1]是不持有股份的最大现金
        if(prices.size() == 0)  return 0;
        vector<vector<int> > dp(prices.size() + 1, vector<int>(2));
        dp[0][0] = dp[0][0] - prices[0];
        dp[0][1] = 0;
        for(int i = 1; i < prices.size(); i++)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);
        }
        return dp[prices.size() - 1][1];
    }
};

这个其实是可以多次购买的,这个就是我们需要把里面的递推公式换一下即可

买卖最佳股票时机III

复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        //dp[i][0]不操作
        //dp[i][1]第一次持有股票的最大现金
        //dp[i][2]第一次不持有股票的最大现金
        //dp[i][3]第二次持有股票的最大现金
        //dp[i][4]第二次不持有股票的最大现金
        if(prices.size() == 0)  return 0;
        vector<vector<int> > dp(prices.size() + 1, vector<int>(5, 0));
        dp[0][0] = 0;
        dp[0][1] -= prices[0];
        dp[0][2] = 0;
        dp[0][3] -= prices[0];
        dp[0][4] = 0;
        for(int i = 1; i < prices.size(); i++)
        {
            dp[i][0] = dp[i - 1][0];
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]); 
            dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);
            dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);
            dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);
        }
        
        return dp[prices.size() - 1][4];
    }
};

这个其实就是2次,那我们分成五个状态,然后一一去解开这个问题

买卖最佳股票时机IV

复制代码
class Solution {
public:
    int maxProfit(int k, vector<int>& prices) {
        if(prices.size() == 0)  return 0;
        vector<vector<int> > dp(prices.size(), vector<int>(2 * k + 1, 0));
        for(int i = 1; i < 2 * k; i+=2)
        {
            dp[0][i] = -prices[0];
        }
        for(int i = 1; i < prices.size(); i++)
        {
            for(int j = 0; j < 2 * k - 1; j+=2)
            {
                dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);
                dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
            }
        }
        return dp[prices.size() - 1][2 * k];
    }
};

这个其实就是K次,那么我们通过II来推算出,这个k次其实是有奇偶性规律的,然后我们推到到k就行

买卖最佳股票含手续费

复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices, int fee) {
        int len = prices.size();
        if(len == 0)    return 0;
        vector<vector<int> > dp(len, vector<int>(2, 0));
        //dp[i][0]不持有股票的最大现金
        //dp[i][1]持有股票的最大现金
        dp[0][0] -= prices[0];
        dp[0][1] = 0;
        for(int i = 1; i < len; i++)
        {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
        }
        return max(dp[len - 1][1], dp[len - 1][0]);
    }
};

这个其实就是和最佳股票II一样,多了个小费,卖出的时候减去小费就行,没什么可说的

以上都是只用了两个状态,也就是持有和不持有这个股票。

买卖最佳股票含冰冻期

复制代码
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int len = prices.size();
        if(len == 0)    return 0;
        vector<vector<int> > dp(len, vector<int>(4, 0));
        //dp[i][0]持有股票状态
        //dp[i][1]保持卖出股票状态
        //dp[i][2]卖出股票状态
        //dp[i][3]冷冻期
        //dp[i][0] = max(dp[i - 1][0], dp[i - 1] - price[i], dp[i - 1][3] - price[i]);
        //dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
        //dp[i][2] = dp[i - 1][0] + price[i];
        //dp[i][3] = dp[i - 1][2];
        dp[0][0] -= prices[0];
        for(int i = 1; i < len; i++)
        {
            dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]));
            dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
            dp[i][2] = dp[i - 1][0] + prices[i];
            dp[i][3] = dp[i - 1][2];
        }
        return max(dp[len - 1][1], max(dp[len - 1][2], dp[len - 1][3]));
    }
};

这唯一的不一样的就是把不持有的股票拆分成卖出股票,保持卖出股票和冰冻期的时候。

这一类的变形题很多,更多的是我们要去思考这个题目的整体买卖路线,也就是持有和不持有的时候,需不需要再去细分,定义某些状态或者说一些很需要我们去定义的东西。

相关推荐
历程里程碑8 小时前
Linux22 文件系统
linux·运维·c语言·开发语言·数据结构·c++·算法
你撅嘴真丑15 小时前
第九章-数字三角形
算法
uesowys15 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
ValhallaCoder16 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
董董灿是个攻城狮16 小时前
AI 视觉连载1:像素
算法
智驱力人工智能16 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算
孞㐑¥17 小时前
算法——BFS
开发语言·c++·经验分享·笔记·算法
月挽清风17 小时前
代码随想录第十五天
数据结构·算法·leetcode
XX風17 小时前
8.1 PFH&&FPFH
图像处理·算法
NEXT0617 小时前
前端算法:从 O(n²) 到 O(n),列表转树的极致优化
前端·数据结构·算法