微调Chinese-clip

1.搭建环境

git clone https://github.com/OFA-Sys/Chinese-CLIP.git

mkdir clip-data,和Chinese-CLIP文件夹同一级

conda create -n cn-clip python==3.10

conda activate cn-clip

cd /data/Chinese-CLIP/

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

2.数据模型准备

下载模型:

下载模型可以根据官方的指定地址下载,这次我们微调的是基础版本的也就是clip-cn-vit-b-16.pt, clip-data/pretrained_weights

https://github.com/OFA-Sys/Chinese-CLIP?tab=readme-ov-file#模型规模--下载链接

下载数据:

https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/MUGE.zip

这里面是标准的数据集格式,文件名是这个数据集的名字,将它放在clip-data/datasets目录下,并解压

修改脚本

使用run_scripts/muge_finetune_vit-b-16_rbt-base.sh这个基础版的脚本

主要是单卡或者多卡训练参数配置以及相关参数设置,batchsize lr这些等:

3.训练

执行命令,将这个进程挂到后台

nohup bash run_scripts/muge_finetune_vit-b-16_rbt-base.sh /home/fsy23/CSDN/clip-data/ > train.log 2>&1 &

训练日志我们可以通过两个地方看到,一个是我们自己在命令行指定的 train.log,一个是官方的指定目录。我们打开log

可能会出现报错:

修改:

在训练脚本里面,

在在cn_clip/training/params.py里面也要修改

还需要在cn_clip/training/main.py脚本里面修改一下,一共6处

重新运行一下脚本命令:

bash run_scripts/muge_finetune_vit-b-16_rbt-base.sh /data/LLM/clip-data/

单卡训练:

开始训练:

相关推荐
lucky_lyovo1 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn5 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy9 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
呆呆的小鳄鱼10 分钟前
leetcode:冗余连接 II[并查集检查环][节点入度]
算法·leetcode·职场和发展
墨染点香11 分钟前
LeetCode Hot100【6. Z 字形变换】
java·算法·leetcode
沧澜sincerely12 分钟前
排序【各种题型+对应LeetCode习题练习】
算法·leetcode·排序算法
CQ_071212 分钟前
自学力扣:最长连续序列
数据结构·算法·leetcode
弥彦_28 分钟前
cf1925B&C
数据结构·算法
静心问道33 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域35 分钟前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源