微调Chinese-clip

1.搭建环境

git clone https://github.com/OFA-Sys/Chinese-CLIP.git

mkdir clip-data,和Chinese-CLIP文件夹同一级

conda create -n cn-clip python==3.10

conda activate cn-clip

cd /data/Chinese-CLIP/

pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

2.数据模型准备

下载模型:

下载模型可以根据官方的指定地址下载,这次我们微调的是基础版本的也就是clip-cn-vit-b-16.pt, clip-data/pretrained_weights

https://github.com/OFA-Sys/Chinese-CLIP?tab=readme-ov-file#模型规模--下载链接

下载数据:

https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/MUGE.zip

这里面是标准的数据集格式,文件名是这个数据集的名字,将它放在clip-data/datasets目录下,并解压

修改脚本

使用run_scripts/muge_finetune_vit-b-16_rbt-base.sh这个基础版的脚本

主要是单卡或者多卡训练参数配置以及相关参数设置,batchsize lr这些等:

3.训练

执行命令,将这个进程挂到后台

nohup bash run_scripts/muge_finetune_vit-b-16_rbt-base.sh /home/fsy23/CSDN/clip-data/ > train.log 2>&1 &

训练日志我们可以通过两个地方看到,一个是我们自己在命令行指定的 train.log,一个是官方的指定目录。我们打开log

可能会出现报错:

修改:

在训练脚本里面,

在在cn_clip/training/params.py里面也要修改

还需要在cn_clip/training/main.py脚本里面修改一下,一共6处

重新运行一下脚本命令:

bash run_scripts/muge_finetune_vit-b-16_rbt-base.sh /data/LLM/clip-data/

单卡训练:

开始训练:

相关推荐
xiangduanjava2 分钟前
关于安装Ollama大语言模型本地部署工具
人工智能·语言模型·自然语言处理
YuTaoShao19 分钟前
【LeetCode 热题 100】73. 矩阵置零——(解法二)空间复杂度 O(1)
java·算法·leetcode·矩阵
Heartoxx20 分钟前
c语言-指针(数组)练习2
c语言·数据结构·算法
zzywxc78722 分钟前
AI 正在深度重构软件开发的底层逻辑和全生命周期,从技术演进、流程重构和未来趋势三个维度进行系统性分析
java·大数据·开发语言·人工智能·spring
超龄超能程序猿25 分钟前
(1)机器学习小白入门 YOLOv:从概念到实践
人工智能·机器学习
大熊背34 分钟前
图像处理专业书籍以及网络资源总结
人工智能·算法·microsoft
满分观察网友z38 分钟前
别怕树!一层一层剥开它的心:用BFS/DFS优雅计算层平均值(637. 二叉树的层平均值)
算法
江理不变情41 分钟前
图像质量对比感悟
c++·人工智能
杰克尼2 小时前
1. 两数之和 (leetcode)
数据结构·算法·leetcode
YuTaoShao3 小时前
【LeetCode 热题 100】56. 合并区间——排序+遍历
java·算法·leetcode·职场和发展