豆包大模型接口调用

豆包大模型接口调用

一.环境描述

Python版本:Python 3.11.3(官方要求上大于2.7即可)

二.基础库的安装

python 复制代码
# 实现语音识别
pip install pyttsx3
# 加载env环境文件
pip install dotenv
# 环境SDK的安装
pip install volcengine-python-sdk

在SDK中安装出错

  1. 按下 Win+R ,输入 regedit 打开注册表编辑器。
  2. 设置 \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem 路径下的变量 LongPathsEnabled 为 1 即可。

三.pycharm创建项目

创建一个.env文件,用于变量的读取

四.火山引擎

登录注册

点击网址后进行注册,实名认证后可以申请API接口

名称和API后面要使用(名称是VOLC_ACCESSKEY,API key是VOLC_SECRETKEY)

创建推理申请接入点

添加模型

官方赠送50万tokens,额度用完后就收费

复制上述的字符串后续使用(ENDPOINT_ID的内容)

五.程序编写

1.在.env文件中填写以下内容
VOLC_ACCESSKEY= your Access Key
VOLC_SECRETKEY= your Secret Access Key
ENDPOINT_ID= your ENDPOINT_ID
2.把第四部分相应内容填写到文件中
python 复制代码
import os
import pyttsx3
from volcenginesdkarkruntime import Ark
import dotenv

# 加载环境变量
dotenv.load_dotenv(".env")

# 初始化 Ark 客户端
client = Ark()
client = Ark(api_key="your api-key", region="cn-beijing")

# 初始化 pyttsx3 引擎
engine = pyttsx3.init()

# 配置 TTS 的语速和音量(可选)
engine.setProperty('rate', 150)  # 语速
engine.setProperty('volume', 1)  # 音量

# 从环境变量中获取模型 ID
model_id = os.getenv("ENDPOINT_ID")

# 欢迎语
Welcome_Text = "您好,我是豆包,您的大模型对话助手,请问有什么可以帮到您?(输入 'exit' 退出对话)"
print(Welcome_Text)
# engine.say(Welcome_Text)
# engine.runAndWait()  # 等待语音播放完毕

# 进入多轮对话的循环
while True:
    # 从终端获取用户输入
    user_input = input("User:\r\n")

    # 检查用户是否想退出
    if user_input.lower() in ["exit", "quit"]:
        print("AI:感谢您的使用,再见!")
        break

    # 创建流式对话请求
    stream = client.chat.completions.create(
        model=model_id,
        messages=[
            {"role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"},
            {"role": "user", "content": user_input},  # 使用终端输入的内容
        ],
        stream=True
    )

    print("AI:")
    # 初始化一个空字符串来存储所有文本
    full_text = ""

    # 逐块读取流式输出并将结果打印
    for chunk in stream:
        if not chunk.choices:
            continue
        # 获取文本内容
        text = chunk.choices[0].delta.content

        # 输出文本到控制台
        print(text, end="")

        # 将文本累积到 full_text
        full_text += text

    # # 当流式结果全部接收完成后,开始将累积的文本通过 TTS 朗读出来
    # if full_text:
    #     engine.say(full_text)
    #     engine.runAndWait()  # 等待语音播放完毕

    print("\r\n")

注意:因为模型指定北京,需要将代理指定北京,api key为下述,可以开启语音朗读,把代码中的注释取消即可

client = Ark(api_key="your api-key", region="cn-beijing")

3.运行结果

定北京,api key为下述,可以开启语音朗读,把代码中的注释取消即可

client = Ark(api_key="your api-key", region="cn-beijing")

[外链图片转存中...(img-ZjA8DraG-1729483323133)]

3.运行结果
相关推荐
请站在我身后2 小时前
复现Qwen-Audio 千问
人工智能·深度学习·语言模型·语音识别
正在走向自律2 小时前
Agent 案例分析:金融场景中的智能体-蚂蚁金服案例(10/30)
阿里云·金融·ai agent·金融场景中的智能体
知来者逆6 小时前
Binoculars——分析证实大语言模型生成文本的检测和引用量按学科和国家明确显示了使用偏差的多样性和对内容类型的影响
人工智能·深度学习·语言模型·自然语言处理·llm·大语言模型
Kongues7 小时前
探究人工智能在教育领域的应用——以大语言模型为例
人工智能·语言模型·自然语言处理
马剑威(威哥爱编程)8 小时前
分布式Python计算服务MaxFrame使用心得
开发语言·分布式·python·阿里云
小军军军军军军11 小时前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
DashVector12 小时前
如何通过HTTP API检索Doc
数据库·人工智能·http·阿里云·数据库开发·向量检索
@泽栖12 小时前
阿里云-将旧服务器数据与配置完全迁移至新服务器
服务器·阿里云
敲代码敲到头发茂密14 小时前
【大语言模型】LangChain 核心模块介绍(Memorys)
android·语言模型·langchain
西西弗Sisyphus1 天前
大型语言模型(LLMs)演化树 Large Language Models
人工智能·语言模型·自然语言处理·大模型