这篇文章主要是对yolov9目标检测和目标分割预测测试时的报错,进行解决方案。
在说明解决方案前,严重投诉、吐槽一些博主发的一些文章,压根没用的解决方法,也不知道他们从哪里抄的,误人子弟、浪费时间。
我在解决前,也搜索了很多相关的报错解决方案,他们纯属乱来,都没有亲自尝试。
报错一:目标检测AttributeError: 'list' object has no attribute 'device'
最近微智启软件工作室在运行yolov9目标检测的detect.py测试代码时,报错:
File "G:\down\yolov9-main\yolov9-main\detect.py", line 102, in run
ValueError: only one element tensors can be converted to Python scalars
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
File "G:\down\yolov9-main\yolov9-main\utils\general.py", line 905, in non_max_suppression
device = prediction.device
AttributeError: 'list' object has no attribute 'device'
这是因为general.py代码中,900行左右的代码错误了,可以看到里面是一个包含两个数据的,假如直接设置是会报错的
general.py的位置可以直接点击报错的这个链接跳转,当然也可以在根目录下的yolov9-main\utils\general.py手动打开
下面的yolov5的,可以看到只有一个数据,所以不会报错,照抄代码是不对的哟,官方大大!
所以需要对代码进行遍历,设置它改写后的代码如下,替换之前的代码即可。
if isinstance(prediction, (list, tuple)):
processed_predictions = [] # 用于存储处理后的张量列表
for pred_tensor in prediction:
# 对每个张量进行处理
processed_tensor = pred_tensor[0] # 假设你只关心张量中的第一个结果
processed_predictions.append(processed_tensor) # 将处理后的张量添加到列表中
# 使用处理后的张量列表中的第一个张量作为预测结果
prediction = processed_predictions[0]
# 在此之后可以继续使用 prediction 变量
device = prediction.device
替换后的代码格式如下
之后再运行,即可完美解决!
现在是2024年2月23日,后期官方可能会修改这个bug,根据具体情况来修改。
报错二:目标检测AttributeError: 'list' object has no attribute 'view'
```
Traceback (most recent call last):
File "G:\down\yolov9-main\yolov9-main\train.py", line 635, in <module>
main(opt)
File "G:\down\yolov9-main\yolov9-main\train.py", line 529, in main
train(opt.hyp, opt, device, callbacks)
File "G:\down\yolov9-main\yolov9-main\train.py", line 305, in train
loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
File "G:\down\yolov9-main\yolov9-main\utils\loss_tal.py", line 168, in call
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
File "G:\down\yolov9-main\yolov9-main\utils\loss_tal.py", line 168, in <listcomp>
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
AttributeError: 'list' object has no attribute 'view'
```
解决方案:在v8之前,我们都是习惯配置train.py进行训练的,但是根据v9作者在GitHub上的回复来看,我们应该用train_dual.py这个来训练,而不是train.py。
train.py至于有啥用,暂时没见回复,不过我觉得更多的像是一种备份没有删除。
三:
# Update model
model.eval()
for k, m in model.named_modules():
# if isinstance(m, (Detect, V6Detect)):
if isinstance(m, Detect):
m.inplace = inplace
m.dynamic = dynamic
m.export = True
for _ in range(2):
y = model(im) # dry runs
if half and not coreml:
im, model = im.half(), model.half() # to FP16
# shape = tuple((y[0] if isinstance(y, tuple) else y).shape) # model output shape
shape = tuple((y[0][0] if isinstance(y, tuple) else y).shape) # model output shape
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
报错三:分割预测报错AttributeError: 'list' object has no attribute 'shape'
Traceback (most recent call last):
File "predict.py", line 246, in <module>
main(opt)
File "predict.py", line 241, in main
run(**vars(opt))
File "/root/miniconda3/lib/python3.8/site-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "predict.py", line 126, in run
masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
File "/root/autodl-tmp/yolov9-main/utils/segment/general.py", line 54, in process_mask
c, mh, mw = protos.shape # CHW
AttributeError: 'list' object has no attribute 'shape'
解决方案:
根据报错的位置,找到segment文件夹下面的predict.py。在126行附近,把原本masks的这整行,替换成新的(如下代码)
masks = process_mask(proto[2].squeeze(0), det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
最后也吐槽一下官方,那么久了,这么基础的功能还总是报错,能不能用点心啊。
文章由微智启原创,转载请标明出处,谢谢。
如果还有其他问题,可以联系技术客服:3447362049