深度学习 基本函数01

np.dot 是 NumPy 库中的一个函数,用于计算两个数组的点积(也称为内积或数量积)。点积是两个向量的对应元素乘积之和。

np.random.normal 是 NumPy 库中的一个函数,用于生成符合正态分布(也称为高斯分布)的随机数。

y.reshape((-1, 1)) 是一个常见的操作。-1表示就自动计算长度。

np.array 函数用于创建一个数组。当你使用 np.array([2, -3.4]) 时,你正在创建一个包含两个元素的一维 NumPy 数组,这两个元素分别是数字 2 和 -3.4。

yield 是一个关键字,它用于在函数中创建一个生成器(generator)。生成器是一种特殊的迭代器,它可以在保持状态的同时,一次产生一个序列中的值。使用 yield 的函数被称为生成器函数。

backward() 函数是一个执行反向传播(backpropagation)的函数。反向传播是一种用于计算神经网络权重梯度的算法,它根据损失函数的输出来更新网络的权重,从而最小化损失函数。

requires_grad 是一个参数属性,用于指定是否需要计算该参数的梯度。这个属性通常用于控制梯度的计算,尤其是在构建复杂的神经网络或执行反向传播时。

深度学习中的过拟合(Overfitting)是指模型在训练数据上表现得很好,但在新的、未见过的数据上表现不佳的情况。换句话说,模型在训练集上学习得太好,以至于它记住了训练数据中的噪声和细节,而不是学习到数据的一般规律。这导致模型的泛化能力下降,无法很好地处理新数据。

热编码(One-Hot Encoding)是一种处理分类数据的方法,它将分类变量转换为一种数值形式,使得模型能够更好地处理这些数据。具体来说,热编码为每个类别创建一个新的二进制特征,这些特征在任何给定时间只有一个是激活的(标记为1),而其他所有特征都是非激活的(标记为0)。

交叉熵(Cross-Entropy)是信息论中的一个概念,用于衡量两个概率分布之间的差异。在深度学习中,交叉熵损失函数(Cross-Entropy Loss)是用于分类问题最常用的损失函数之一,特别是对于多分类问题。

在深度学习和统计学中,似然函数(Likelihood Function)是一个非常重要的概念,它用于估计统计模型的参数,特别是在最大似然估计(Maximum Likelihood Estimation, MLE)中。

相关推荐
吃个糖糖8 分钟前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉
AI慧聚堂20 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者21 分钟前
【pytorch】循环神经网络
人工智能·pytorch
FL162386312931 分钟前
钢材缺陷识别分割数据集labelme格式693张4类别
深度学习
cdut_suye34 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报1 小时前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技1 小时前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐2 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1362 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练