深度学习 基本函数01

np.dot 是 NumPy 库中的一个函数,用于计算两个数组的点积(也称为内积或数量积)。点积是两个向量的对应元素乘积之和。

np.random.normal 是 NumPy 库中的一个函数,用于生成符合正态分布(也称为高斯分布)的随机数。

y.reshape((-1, 1)) 是一个常见的操作。-1表示就自动计算长度。

np.array 函数用于创建一个数组。当你使用 np.array([2, -3.4]) 时,你正在创建一个包含两个元素的一维 NumPy 数组,这两个元素分别是数字 2 和 -3.4。

yield 是一个关键字,它用于在函数中创建一个生成器(generator)。生成器是一种特殊的迭代器,它可以在保持状态的同时,一次产生一个序列中的值。使用 yield 的函数被称为生成器函数。

backward() 函数是一个执行反向传播(backpropagation)的函数。反向传播是一种用于计算神经网络权重梯度的算法,它根据损失函数的输出来更新网络的权重,从而最小化损失函数。

requires_grad 是一个参数属性,用于指定是否需要计算该参数的梯度。这个属性通常用于控制梯度的计算,尤其是在构建复杂的神经网络或执行反向传播时。

深度学习中的过拟合(Overfitting)是指模型在训练数据上表现得很好,但在新的、未见过的数据上表现不佳的情况。换句话说,模型在训练集上学习得太好,以至于它记住了训练数据中的噪声和细节,而不是学习到数据的一般规律。这导致模型的泛化能力下降,无法很好地处理新数据。

热编码(One-Hot Encoding)是一种处理分类数据的方法,它将分类变量转换为一种数值形式,使得模型能够更好地处理这些数据。具体来说,热编码为每个类别创建一个新的二进制特征,这些特征在任何给定时间只有一个是激活的(标记为1),而其他所有特征都是非激活的(标记为0)。

交叉熵(Cross-Entropy)是信息论中的一个概念,用于衡量两个概率分布之间的差异。在深度学习中,交叉熵损失函数(Cross-Entropy Loss)是用于分类问题最常用的损失函数之一,特别是对于多分类问题。

在深度学习和统计学中,似然函数(Likelihood Function)是一个非常重要的概念,它用于估计统计模型的参数,特别是在最大似然估计(Maximum Likelihood Estimation, MLE)中。

相关推荐
zzywxc7872 分钟前
AI大模型的技术演进、流程重构、行业影响三个维度的系统性分析
人工智能·重构
点控云3 分钟前
智能私域运营中枢:从客户视角看 SCRM 的体验革新与价值重构
大数据·人工智能·科技·重构·外呼系统·呼叫中心
zhaoyi_he11 分钟前
多模态大模型的技术应用与未来展望:重构AI交互范式的新引擎
人工智能·重构
葫三生1 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336392 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk5 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程6 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li6 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝6 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion8 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp