深度学习 基本函数01

np.dot 是 NumPy 库中的一个函数,用于计算两个数组的点积(也称为内积或数量积)。点积是两个向量的对应元素乘积之和。

np.random.normal 是 NumPy 库中的一个函数,用于生成符合正态分布(也称为高斯分布)的随机数。

y.reshape((-1, 1)) 是一个常见的操作。-1表示就自动计算长度。

np.array 函数用于创建一个数组。当你使用 np.array([2, -3.4]) 时,你正在创建一个包含两个元素的一维 NumPy 数组,这两个元素分别是数字 2 和 -3.4。

yield 是一个关键字,它用于在函数中创建一个生成器(generator)。生成器是一种特殊的迭代器,它可以在保持状态的同时,一次产生一个序列中的值。使用 yield 的函数被称为生成器函数。

backward() 函数是一个执行反向传播(backpropagation)的函数。反向传播是一种用于计算神经网络权重梯度的算法,它根据损失函数的输出来更新网络的权重,从而最小化损失函数。

requires_grad 是一个参数属性,用于指定是否需要计算该参数的梯度。这个属性通常用于控制梯度的计算,尤其是在构建复杂的神经网络或执行反向传播时。

深度学习中的过拟合(Overfitting)是指模型在训练数据上表现得很好,但在新的、未见过的数据上表现不佳的情况。换句话说,模型在训练集上学习得太好,以至于它记住了训练数据中的噪声和细节,而不是学习到数据的一般规律。这导致模型的泛化能力下降,无法很好地处理新数据。

热编码(One-Hot Encoding)是一种处理分类数据的方法,它将分类变量转换为一种数值形式,使得模型能够更好地处理这些数据。具体来说,热编码为每个类别创建一个新的二进制特征,这些特征在任何给定时间只有一个是激活的(标记为1),而其他所有特征都是非激活的(标记为0)。

交叉熵(Cross-Entropy)是信息论中的一个概念,用于衡量两个概率分布之间的差异。在深度学习中,交叉熵损失函数(Cross-Entropy Loss)是用于分类问题最常用的损失函数之一,特别是对于多分类问题。

在深度学习和统计学中,似然函数(Likelihood Function)是一个非常重要的概念,它用于估计统计模型的参数,特别是在最大似然估计(Maximum Likelihood Estimation, MLE)中。

相关推荐
熊猫_豆豆几秒前
YOLOP车道检测
人工智能·python·算法
nimadan121 分钟前
**热门短剧小说扫榜工具2025推荐,精准捕捉爆款趋势与流量
人工智能·python
qq_12498707534 分钟前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
杜子不疼.5 分钟前
CANN算子基础框架库opbase的算子开发与扩展机制深度解析
人工智能
程序猿追6 分钟前
CANN ops-math仓库解读 数学算子的底层支撑与高性能实现
人工智能·架构
结局无敌6 分钟前
统一算子语言:cann/ops-nn 如何为异构AI世界建立通用“方言”
人工智能·cann
杜子不疼.13 分钟前
CANN计算机视觉算子库ops-cv的图像处理与特征提取优化实践
图像处理·人工智能·计算机视觉
大闲在人14 分钟前
软件仍将存在,但软件公司会以全新形式出现——从Claude智能体引发万亿市值震荡看行业重构
人工智能
艾莉丝努力练剑15 分钟前
【Linux:文件】Ext系列文件系统(初阶)
大数据·linux·运维·服务器·c++·人工智能·算法
芷栀夏18 分钟前
从 CANN 开源项目看现代爬虫架构的演进:轻量、智能与统一
人工智能·爬虫·架构·开源·cann