python-docx -- 对比两个表格的行数据

文章目录

对比表格数据

  • 删除行
  • 新增行
  • 更新行
python 复制代码
# __author__ = "laufing"
from docx import Document


doc = Document("table.docx")

table_data = []
for table in doc.tables:
    for row in table.rows:
        table_data.append([cell.text for cell in row.cells])

print("table data:", table_data)


data1 = [ # m
    ['省份', '城市', '地区', '小区'],
    ['河南省', '郑州市', '东区', '碧桂园'],
    ['河北省', '天津市', '四环区', '瑞丰锦尚'],
    ['河北省', '未知市', '未知区', '0'],
    ['山西省', '晋城市', '长垣县', '0'],
]


data2 = [ # n
    ['省份', '城市', '地区', '小区'],
    ['河南省', '郑州市', '东区', '碧桂园'],
    ['河北省', '天津市', '四环区', '瑞丰锦尚'],
    # ['河北省', '未知市', '未知区', '0'],
    ['山西省', '晋城市', '长垣县', '0'],
    ['山西省', '未知市', '未知区', '0']
]
m = len(data1)
n = len(data2)
from difflib import SequenceMatcher
import numpy as np

# old -> new
matrix = np.zeros((m, n))
for i in range(m):
    seq1 = "".join(data1[i])
    for j in range(n):
        matrix[i][j] = SequenceMatcher(None, seq1, "".join(data2[j])).ratio()

# 表格1中的行 与 表格2中行的 最大相似度    达到1的未变化  (行文本之间有相似时,准确率下降)
data1_max_proba = np.max(matrix, axis=1)

# data1中删除的行   相似度 < 0.82   0.82 - 0.99 更新    >= 0.99 未变化
arr = np.argwhere(data1_max_proba < 0.82)
print("删除的行:", arr)


# 与基础数据 索引对应
data11 = [ # m
    ['省份', '城市', '地区', '小区'],
    ['河南省', '郑州市', '东区', '碧桂园'],
    ['河北省', '天津市', '四环区', '瑞丰锦尚'],
    ['', '未知市', '未知区', '0'], # 索引为3 删除
    ['山西省', '未知市', '未知区', '0']
]

data22 = [ # n
    ['省份', '城市', '地区', '小区'],
    ['河南省', '郑州市', '东区', '碧桂园'],
    ['河北省', '天津市', '四环区', '瑞丰锦尚'],
    # ['河北省', '未知市', '未知区', '0'],
    ['山西省', '晋城市', '长垣县', '0'],
    ['', '未知市', '未知区', '0']
]

# new -> old
matrix2 = np.zeros((n, m))
for i in range(n):
    seq2 = "".join(data2[i])
    for j in range(m):
        matrix2[i][j] = SequenceMatcher(None, seq2, "".join(data1[j])).ratio()

arr2 = np.max(matrix2, axis=1)
# 获取增加的行  相似度 < 0.82
arr2 = np.argwhere(arr2 < 0.82)
print("增加的行:", arr2)
相关推荐
Demons_皮几秒前
python:ADB通过包名打开应用
开发语言·python·adb
喝旺仔la20 分钟前
Django后台接口开发
后端·python·django
懒惰才能让科技进步37 分钟前
从零学习大模型(八)-----P-Tuning(上)
人工智能·pytorch·python·深度学习·学习·自然语言处理·transformer
知识中的海王42 分钟前
已解决sqlalchemy.exc.OperationalError: (pymssql._pymssql.OperationalError) (18456
数据库·python
云梦量化科技2 小时前
Python开发高频量化策略 速度优化避坑指南
python
工业互联网专业2 小时前
Python毕业设计选题:基于协同过滤的校园音乐推荐系统小程序-django+uniapp
python·小程序·django·uni-app·毕业设计·源码·课程设计
昨天今天明天好多天2 小时前
【Mac】Python 环境管理工具
开发语言·python·macos
_.Switch2 小时前
高效网络自动化:Python在网络基础中的应用
运维·开发语言·网络·python·数据分析·自动化
lanboAI2 小时前
基于yolov8的驾驶员疲劳驾驶检测系统,支持图像、视频和摄像实时检测【pytorch框架、python源码】
pytorch·python·yolo
南巷逸清风2 小时前
LeetCode 101.对称二叉树
c++·python·算法·leetcode