manim边做边学--复数平面

所谓复数平面,就是一种二维坐标系统,用于几何表示复数的场景,其中横轴代表实部,纵轴代表虚部。

每个点对应一个唯一的复数,反之亦然,这种表示方法使得复数的加法、乘法等运算可以通过直观的图形变换来理解。

ComplexPlaneManim库中用于处理复数平面的类。

它不仅提供了标准的笛卡尔坐标系,还特别针对复数操作进行了优化,使得复数及其变换的可视化变得更加直观。

通过 ComplexPlane,我们可以轻松地绘制出复数点、向量以及执行复数变换,如旋转、缩放等。

本篇将介绍Manim中的ComplexPlane对象以及一些常用的使用示例。

1. 主要参数

ComplexPlane继承自上一篇介绍的NumberPlane

ComplexPlane没有自己特有的参数,和NumberPlane的参数是一样的。

参数名称 类型 说明
x_range Sequence[float] 直角平面的横坐标轴范围,间隔
y_range Sequence[float] 直角平面的纵坐标轴范围,间隔
x_length float 直角平面宽度
y_length float 直角平面高度
background_line_style dict 直角平面背景网格线的样式
faded_line_style dict 淡化网格线的样式,用于辅助背景网格线
faded_line_ratio int 定义淡化网格线与背景网格线的比例
make_smooth_after_applying_functions bool 应用函数后是否进行平滑处理

2. 主要方法

NumberPlane一样,ComplexPlane也包含了坐标系统CoordinateSystem类提供的方法,

不过,在复数平面中,我比较常用的是以下3个方法:

名称 说明
add_coordinates 给复数平面的坐标轴添加刻度数值
n2p(number_to_point) 根据复数得到此复数在复数平面上的位置
p2n(point_to_number) 根据复数平面上的位置得到对应的复数

3. 使用示例

下面通过示例来演示复数平面ComplexPlane的多种功能,包括复数平面的网格与坐标轴,复数点的标记与展示、复数平面上的函数图像、复数变换动画等。

ComplexPlane成为我们展示复数概念和性质的有力工具。

3.1. 网格与坐标轴

创建一个复数平面ComplexPlane,绘制网格线和坐标轴,设置实部的范围[-5, 5],虚部的范围[-4, 4],最后再给坐标轴加上刻度值。

python 复制代码
plane = ComplexPlane(
    x_range=[-5, 5],
    y_range=[-4, 4],
    x_length=6,
    y_length=4,
)

# 加上刻度值
plane.add_coordinates()

3.2. 复数点的标记

在复数平面坐标上添加2个复数点,再给这两个点添加标签,显示其复数的值。

python 复制代码
# 创建复数平面
plane = ComplexPlane(
    x_range=[-5, 5],
    y_range=[-5, 5],
)
plane.add_coordinates()

# 添加复数的点
d1 = Dot(plane.n2p(3 + 2j))
d2 = Dot(plane.n2p(-4 - 2j))

3.3. 复数运算

复数平面上添加两个点,然后计算这两个复数相加的结果,并将计算过程在复数平面上用动画显示出来。

python 复制代码
# 创建复数平面
plane = ComplexPlane(
    x_range=[-1, 8],
    y_range=[-1, 8],
)
plane.add_coordinates()

# 初始的两个点
d1 = Dot(plane.n2p(2 + 1j))
d2 = Dot(plane.n2p(2 + 4j))

# 相加后的点
d3 = Dot(plane.n2p(4 + 5j))

3.4. 复数变换

最后,是复数点经过一个函数变换后,在复数平面上显示新的位置。

示例中先初始4个点,然后经过函数$ f(x)=2^x $的变换后,显示其变换后的位置。

其中用到了ComplexPlane的主要方法n2pp2n

python 复制代码
# 创建复数平面
plane = ComplexPlane(
    x_range=[-5, 5],
    y_range=[-5, 5],
)
plane.add_coordinates()

d1 = LabeledDot(
    label=MathTex("1"),
    point=plane.n2p(2 + 1j),
)
d2 = LabeledDot(
    label=MathTex("2"),
    point=plane.n2p(2 + 3j),
)
d3 = LabeledDot(
    label=MathTex("3"),
    point=plane.n2p(-2 - 2j),
)
d4 = LabeledDot(
    label=MathTex("4"),
    point=plane.n2p(-3 + 2j),
)
self.add(d1, d2, d3, d4)

# 变换后点的位置
pd1 = np.exp2(plane.p2n(d1.get_center()))
pd2 = np.exp2(plane.p2n(d2.get_center()))
pd3 = np.exp2(plane.p2n(d3.get_center()))
pd4 = np.exp2(plane.p2n(d4.get_center()))

4. 附件

文中的代码只是关键部分的截取,完整的代码共享在网盘中(complex_plane.py),

下载地址: 完整代码 (访问密码: 6872)

相关推荐
wang_yb7 小时前
manim边学边做--移动动画
databook·manim
wang_yb1 天前
解锁 Git Log 更多实用技巧
git·databook
wang_yb3 天前
manim边学边做--旋转
databook·manim
wang_yb4 天前
从混沌到秩序:Python的依赖管理工具分析
python·databook
wang_yb5 天前
manim边学边做--突出显示
databook·manim
wang_yb6 天前
『玩转Streamlit』--集成Matplotlib
streamlit·databook
wang_yb6 天前
manim边学边做--渐变生长
databook·manim
wang_yb9 天前
谈谈Python中的接口与抽象基类
python·databook
wang_yb10 天前
manim边做边学--淡入淡出
databook·manim
wang_yb11 天前
高效文件处理:Python pathlib实战指南
python·databook