Opencv:FisherFace算法实现人脸检测

目录

简介

实现步骤

[1. 图像读取和预处理](#1. 图像读取和预处理)

[2. 创建和训练识别器](#2. 创建和训练识别器)

[3. 图像识别和结果展示](#3. 图像识别和结果展示)

4、结果展示

总结


简介

在人工智能和计算机视觉领域,人脸识别是一项非常有趣且实用的技术。本文将向您介绍如何使用OpenCV库以及FisherFace算法实现人脸识别。我们将一步步分析代码,并展示如何将其应用到一个简单的项目中。

人脸识别技术通过分析人脸图像的特征,从而识别出图像中的人。OpenCV是一个强大的计算机视觉库,提供了多种人脸识别算法。FisherFace算法是基于线性判别分析(LDA)的一种人脸识别方法,它能够有效地在特征空间中对人脸进行分类。

实现步骤

1. 图像读取和预处理

首先,我们需要读取和预处理图像。预处理包括灰度化和调整图像大小,以便输入到人脸识别算法中。

python 复制代码
import cv2
import numpy as np

# 定义一个函数用于读取和预处理图像
def image_re(image):
    a = cv2.imread(image, 0)  # 读取图像,灰度模式
    a = cv2.resize(a, (120, 180))  # 调整图像大小
    return a

# 读取训练图像
a = image_re('hg1.png')
b = image_re('hg2.png')
c = image_re('pyy1.png')
d = image_re('pyy2.png')

# 将图像添加到列表中
images = [a, b, c, d]
# 为每个图像分配标签
labels = [0, 0, 1, 1]

2. 创建和训练识别器

接下来,我们使用FisherFace算法创建一个识别器,并用训练图像和标签来训练它。

python 复制代码
# 读取待识别的图像
pre_image = cv2.imread('hg3.png', 0)
pre_image = cv2.resize(pre_image, (120, 180))

# 创建FisherFace识别器
recognizer = cv2.face.FisherFaceRecognizer_create()
# 训练识别器
recognizer.train(images, np.array(labels))

3. 图像识别和结果展示

现在,我们可以使用训练好的识别器来预测待识别图像的标签。

python 复制代码
# 预测待识别图像的标签和置信度
label, confidence = recognizer.predict(pre_image)

# 创建一个字典用于标签到名称的映射
dic = {0: 'hg', 1: 'pyy'}

# 打印识别结果
print('这个人是:', dic[label])
print('置信度:', confidence)

# 在图像上添加识别结果
aa = cv2.putText(cv2.imread('hg3.png').copy(), dic[label], (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow('xx', aa)
cv2.waitKey(60000)

在上面的代码中,我们首先使用recognizer.predict方法预测待识别图像的标签和置信度。然后,我们使用cv2.putText在图像上添加识别结果。

4、结果展示

总结

本文展示了如何使用OpenCV库和FisherFace算法实现人脸识别。我们首先读取和预处理图像,然后创建和训练识别器,最后进行图像识别并展示结果。FisherFace算法因其简单性和准确性,在人脸识别领域仍然非常受欢迎。

相关推荐
weiwenhao29 分钟前
关于 nature 编程语言
人工智能·后端·开源
神经星星30 分钟前
训练成本29.4万美元,DeepSeek-R1登Nature封面,首个通过权威期刊同行评审的主流大模型获好评
人工智能
神州问学34 分钟前
【AI洞察】别再只想着“让AI听你话”,人类也需要学习“适应AI”!
人工智能
CoovallyAIHub1 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
DevUI团队1 小时前
🚀 MateChat V1.8.0 震撼发布!对话卡片可视化升级,对话体验全面进化~
前端·vue.js·人工智能
聚客AI1 小时前
🎉7.6倍训练加速与24倍吞吐提升:两项核心技术背后的大模型推理优化全景图
人工智能·llm·掘金·日新计划
黎燃1 小时前
当 YOLO 遇见编剧:用自然语言生成技术把“目标检测”写成“目标剧情”
人工智能
算家计算1 小时前
AI教母李飞飞团队发布最新空间智能模型!一张图生成无限3D世界,元宇宙越来越近了
人工智能·资讯
掘金一周1 小时前
Flutter Riverpod 3.0 发布,大规模重构下的全新状态管理框架 | 掘金一周 9.18
前端·人工智能·后端
用户5191495848452 小时前
C#记录类型与集合的深度解析:从默认实现到自定义比较器
人工智能·aigc