2023年五一杯数学建模C题双碳目标下低碳建筑研究求解全过程论文及程序

2023年五一杯数学建模

C题 双碳目标下低碳建筑研究

原题再现:

"双碳"即碳达峰与碳中和的简称,我国力争2030年前实现碳达峰,2060年前实现碳中和。"双碳"战略倡导绿色、环保、低碳的生活方式。我国加快降低碳排放步伐,大力推进绿色低碳科技创新,以提高产业和经济的全球竞争力。
  低碳建筑是指在建筑材料与设备制造、施工建造和建筑物使用的整个生命周期内,减少化石能源的使用,提高能效,降低二氧化碳排放量。
请查找相关资料,解决以下问题:
  问题1:现在有一间长4米、宽3米、高3米的单层平顶单体建筑,墙体为砖混结构,厚度30厘米(热导系数 ),屋顶钢筋混凝土浇筑,厚度30厘米(热导系数 ),门窗总面积5平方(热导系数 ),地面为混凝土 (热导系数 )。该建筑物所处地理位置一年(按365天计算)的月平均温度(单位:摄氏度)见下表。

  假设该建筑物内温度需要一直保持在18-26度,在温度不适宜的时候要通过电来调节温度,消耗一度电相当于0.28千克碳排放。请计算该建筑物通过空调(假设空调制热性能系数COP为3.5,制冷性能系数EER为2.7)调节温度的年碳排放量。(尽量使用本题所给条件计算碳排放,不考虑其他损耗)
  问题2:在居住建筑的整个生命周期 (建造、运行、拆除)中,影响碳排放的因素有很多,如建筑设计标准、气候、建材生产运输、地区差异、建造拆除能耗、装修风格、使用能耗、建筑类型等。请查找、分析资料,建立数学模型,找出与上述因素相关度大且易于量化的指标,基于这些指标对居住建筑整个生命周期的碳排放进行综合评价。
  问题3:在问题2的基础上,分别考虑建筑生命周期三个阶段的碳排放问题,查找相关资料,建立数学模型,对2021年江苏省13个地级市的居住建筑碳排放进行综合评价,并对所建评价模型的有效性进行验证。
  问题4:准确的碳排放预测能够为制定减排政策、优化低碳建筑设计提供重要的参考依据。建立碳排放预测模型,基于江苏省建筑全过程碳排放的历史数据,对2023年江苏省建筑全过程的碳排放量进行预测。
  问题5:请结合前面的讨论给出江苏省建筑碳减排的政策建议。

整体求解过程概述(摘要)

研究双碳背景下住宅建筑全生命周期碳排放,运用相关分析和主成分分析方法,建立灰色预测模型,旨在促进中国到2030年实现碳峰值,到2060年实现炭中和,促进低碳科技创新,提高人民生活水平。
  针对问题1:本课题研究了通过空调调节建筑物室内温度所产生的碳排放,基于导热系数与面积、厚度、温差的关系,建立了热传导数学模型,计算了不同月份建筑物的热流,得出空调年耗电量为1324.71kW,由于每千瓦的耗电量产生0.28kg的碳,通过空调调温的建筑物年碳排放量为370.9192kg。
  针对问题2:本课题综合评价了影响住宅建筑全生命周期碳排放的因素。施工阶段选择的指标包括降水量、气温、建筑能耗、建筑面积、建筑材料中的生铁和水泥用量、运营阶段的水耗、电耗和天然气耗、拆迁阶段的建筑垃圾。通过相关性分析,确定这10个指标的相关性大于0.3,表明所选指标与住宅建筑生命周期碳排放量具有一定的相关性。然后利用主成分分析方法,得到了10个指标的综合得分,其中建筑面积对住宅建筑碳排放的影响最大,得分为0.136。
  针对第三个问题,在第二个问题的基础上,对江苏省13个地级市的住宅建筑碳排放进行了综合评价。第二个问题是找到12个与碳排放相关的指标,使用Matlab对其进行主成分分析,绘制相关热力学图,并得到综合得分排名:南京碳排放量最多,宿迁最少。找到12个与碳排放相关的指标,使用Matlab对其进行主成分分析,绘制相关热力学图,得到综合得分排序为:南京、苏州、南通、无锡、常州、扬州、徐州、台州、盐城、淮安、连云港、镇江、宿迁,表明南京碳排放量最多,宿迁最少。
  对于问题4:基于江苏省建设全过程碳排放的历史数据,本课题对2023年的碳排放进行了预测。基于江苏省2015-2022年全建设过程碳排放的历史数据,利用灰色预测中的GM(1,1)模型,预测2023年江苏省全建设过程的碳排放量为155.76万吨。
  针对问题5:在分析前四个问题的基础上,从材料、施工、运营、拆迁指标、区域差异和碳排放发展趋势等方面提出了江苏省碳减排的建议,如适当增加墙体厚度、控制建筑面积和提高绿化率、减少建筑垃圾排放、平衡各区域经济发展。

模型假设:

结合本题的实际,为确保模型求解的准确性和合理性,本文排除一些因素的干扰,提出以下几点假设:
  1.假设计算相关建筑的能耗,门窗面积对其无影响;
  2.假设计算建筑物热损失时不存在极端因素;
  3.在计算调节能耗时,假设空调调节不高于18度或低于26度。

问题分析:

问题1分析
  问题1需要研究通过空调温度计算建筑物的年碳排放量。首先,由于空调有制冷和制热两种模式,不需要打开空调,十二个月分为三个部分。第一部分是:11月至4月,空调需要开启暖风;第二部分是6月至8月。空调需要开启冷风;第三部分是5月、9月和10月,不需要打开空调。如果高于26度,则需要调整到26度;对于低于18度的情况,需要打结到18度。地面、墙壁和屋顶的厚度为30cm,门窗面积太小。通过建筑物与外界换热功率与导热系数、接触面积、厚度和温差、建筑物传热热流、热流比和热(冷)性能系数的关系,可以计算出空调器的工作功率、空调器的电耗和年碳排放量。

问题2分析
  问题2需要分析一些指标,以全面评估住宅建筑在其整个生命周期中的碳排放量。建筑物的整个生命周期包括三个阶段:建造、运营和拆除。本文寻找了2018年至2021年中国住宅建筑的年度碳排放量,并选取了10个指标,其中包括建设、运营和拆迁三个阶段的重要影响因素。首先,利用相关性分析来判断碳排放量与这六个指标之间是否存在相关性。然后利用主成分分析方法对数据进行降维,给出不同主成分对应贡献率的权重,最后得出各指标对碳排放的重要性。

问题3分析
  问题3需要根据对问题2中获得的相关结果的分析,并考虑建筑生命周期三个阶段的相关排放,于2021年对江苏省13个地级市的住宅建筑的碳排放进行综合评估。寻找建筑生命周期三个阶段的相关指标,对相关指标采用主成分分析方法,使用Matlab制作相关热图,观察相关性,并对指标进行降维处理,最终确定主成分,通过贡献率对主成分赋权,得出13个地级市住宅建筑碳排放综合得分,并对其进行评价。

问题4分析
  问题4要求基于江苏省建设全过程碳排放的历史数据,开展江苏省2023年建设全过程二氧化碳排放预测研究。查阅相关文献,找出江苏省历年住宅建筑碳排放量,利用灰色预测中的GM(1,1)模型对历年住宅建筑物碳排放量进行预测,得到2023年江苏省建筑全过程碳排放量。

问题5分析
  在前面讨论的基础上,本课题提出了江苏省建筑碳减排的建议。为了实现我国双碳目标下的低碳建筑,应从多方面提出建议。通过问题1、问题2、问题3和问题4,可以分别得出材料对碳排放的影响、不同指标对碳排放量的影响、区域差异对碳排放总量的影响以及历年碳排放的发展趋势。

模型的建立与求解整体论文缩略图

全部论文请见下方" 只会建模 QQ名片" 点击QQ名片即可

程序代码:

部分程序如下:
python 复制代码
import numpy as np
import matplotlib.pyplot as plt
# 定义居住建筑碳排放模型
def building_carbon_emission_model(weight_coeff, index_values):
    return np.dot(weight_coeff, index_values)
# 设置模拟次数
n_simulations = 10000
# 设置权重系数概率分布范围(示例)
weight_coeff_dist = np.array([[0.2, 0.4],[0.3, 0.5],[0.1, 0.3],[0.2, 0.4]])
# 设置指标取值概率分布范围
index_values_dist = np.array([[10, 50],[20, 100],[5, 25],[10, 50]])
# 初始化存储模型输出的数组
model_outputs = np.zeros(n_simulations)
# 进行蒙特卡洛模拟
for i in range(n_simulations):
    # 对权重系数进行随机抽样
    weight_coeff_sample = np.random.uniform(weight_coeff_dist[:, 0], weight_coeff_dist[:, 1] 
    # 对指标取值进行随机抽样
    index_values_sample = np.random.uniform(index_values_dist[:, 0], index_values_dist[:, 1])
    # 计算模型输出
    model_outputs[i] = building_carbon_emission_model(weight_coeff_sample, index_values_sample)
# 分析模型输出
mean_output = np.mean(model_outputs)
std_output = np.std(model_outputs)
confidence_interval = np.percentile(model_outputs, [2.5, 97.5])
print(f"Mean: {mean_output}")
print(f"Standard Deviation: {std_output}")
print(f"95% Confidence Interval: {confidence_interval}")
# 绘制模型输出的直方图
plt.hist(model_outputs, bins=50)
plt.xlabel("Carbon Emission")
plt.ylabel("Frequency")
plt.show()
python 复制代码
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
from statsmodels.tsa.arima.model import ARIMA
from sklearn.metrics import mean_squared_error
import itertools
 # ACF和PACF图
plot_acf(df['log_emission_diff'])
plt.title('ACF')
plot_pacf(df['log_emission_diff'])
plt.title('PACF')
# 确定参数范围
p_range = range(0, 3)
d_range = range(0, 2)
q_range = range(0, 3)# 计算所有参数组合的AIC
best_aic = float('inf')
best_order = None
for p, d, q in itertools.product(p_range, d_range, q_range):
    if p == 0 and d == 0 and q == 0:
        continue
    try:
        model = ARIMA(df['log_emission'], order=(p, d, q))
        results = model.fit()
        if results.aic < best_aic:
            best_aic = results.aic
            best_order = (p, d, q)
    except:
        continue
print(f'Best ARIMA parameters: {best_order}, AIC: {best_aic}')
bash 复制代码
clear; clc
year = 2015:1:2022; %年份
x0 = [102.3 108.7 115.2 121.6 128.1 134.5 140.96 147.41] ;%原始数据序列
n = length(x0); 
year = year' ;
x0 = x0' ;
 
%画出时序图,观察是否是以年份为度量的非负数据
figure(1) ;
plot(year, x0, 'o-') ;
grid on ;
set(gca,'xtick',year(1:1:end)) ; %设置x轴的间隔为1
xlabel('年份');  ylabel('碳排放量');
 
%GM模型适用于数据较短的非负序列,所以要进行非负检验
ERROR = 0;  % 建立一个错误指标,一旦出错就指定为1
% 判断是否有负数元素,当然数据量要4~10期才考虑使用GM
if sum(x0<0) > 0  
    disp('原始数据有负值,不能使用GM')
    ERROR = 1;
end
 
%进行准指数规律检验和进行级比检验
if ERROR == 0   
    disp('------------------------------------------------------------')
    disp('准指数规律检验')
    x1 = cumsum(x0);   % 一次累加
    rho = x0(2:end) ./ x1(1:end-1) ;   % 计算光滑度rho(k) = x0(k)/x1(k-1)
    
    % 画出光滑度的图形,并画上0.5的直线,表示临界值
    figure(2)

plot(year(2:end),rho,'o-',[year(2),year(end)],[0.5,0.5],'-'); grid on;
    text(year(end-1)+0.2,0.55,'临界线')   % 在坐标(year(end-1)+0.2,0.55)上添加文本
    set(gca,'xtick',year(2:1:end))  % 设置x轴横坐标的间隔为1
    xlabel('年份');  ylabel('原始数据的光滑度');  % 给坐标轴加上标签
    
 
    disp(strcat('指标1:光滑比小于0.5的数据占比为',num2str(100*sum(rho<0.5)/(n-1)),'%'))
    disp(strcat('指标2:除去前两个时期外,光滑比小于0.5的数据占比为',num2str(100*sum(rho(3:end)<0.5)/(n-3)),'%'))
    disp('参考标准:指标1一般要大于60%, 指标2要大于90%,你认为本例数据可以通过检验吗?')
    
    flag = 1 ;
    end
    for k = 2 : n
    lamda(k) = x0(k-1) / x0(k) ;
    if (lamda(k) < exp(-2 / (n+1)) || lamda(k) > exp(2 / (n+1)))
        disp('不通过级比检验!!!') ;
        flag = 0 ;
    end
    end
    if flag == 1
        disp('通过级比检验!!!') ;
    end
全部论文请见下方" 只会建模 QQ名片" 点击QQ名片即可
相关推荐
AIGC大时代38 分钟前
分享14分数据分析相关ChatGPT提示词
人工智能·chatgpt·数据分析
SelectDB43 分钟前
Apache Doris 2.1.8 版本正式发布
大数据·数据库·数据分析
Dipeak数巅科技3 小时前
数巅科技连续中标大模型项目 持续助力央国企数智化升级
大数据·人工智能·数据分析
Ray.19983 小时前
Flink 的核心特点和概念
大数据·数据仓库·数据分析·flink
一只码代码的章鱼3 小时前
粒子群算法 笔记 数学建模
笔记·算法·数学建模·逻辑回归
云天徽上7 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy7 小时前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析
艾思科蓝 AiScholar7 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
胡萝卜不甜12 小时前
数学建模论文通用模板(细节方法二)
数学建模
浏览器爱好者1 天前
如何在Python中进行数据分析?
开发语言·python·数据分析