基于PaddleSpeech实现语音识别

解决思路

长录音进行切分

录音转文字识别

录音文本加标点

环境搭建

安装paddlepaddle和paddleSpeech:

复制代码
pip install paddlepaddle
pip install paddlespeech

PaddleSpeech 是基于飞桨 PaddlePaddle 的语音方向的开源模型库,用于语音和音频中的各种关键任务的开发,包含大量基于深度学习前沿和有影响力的模型,一些典型的应用如下:

声音分类

语音识别

语音翻译

语音合成

相关依赖如下:

复制代码
gcc >= 4.8.5

paddlepaddle >= 2.3.1

python >= 3.7

linux(推荐), mac, windows

win必须安装Microsoft C++生成工具

命令行调用

语音分类

复制代码
paddlespeech cls --input 1.mp3

一段python办公自动化抖音广告语,因为有背景音乐,所以判断为Music。

语音识别

这段广告语被完整识别出来,唯一的问题是不带标点符号。

语音翻译(英翻中)

复制代码
paddlespeech asr --lang zh --input input_16k.wav
windows暂不支持,但是linux可以。

语音合成

复制代码
paddlespeech tts --input "你好,欢迎关注电力数据新应用!" --output output.wav

API调用语音识别

复制代码
from paddlespeech.cli.asr.infer import ASRExecutor

asr = ASRExecutor()
result = asr(audio_file="1.mp3")
print(result)

PaddleSpeech识别最长语音为50s,故需要切分。

代码实现

音频切分:

安装auditok库。

复制代码
pip install auditok

引入需要的库。

复制代码
from paddlespeech.cli.asr.infer import ASRExecutor
from paddlespeech.cli.text.infer import TextExecutor
import csv
import moviepy.editor as mp
import auditok
import os
import paddle
import soundfile
import librosa
import warnings

warnings.filterwarnings('ignore')

通过auditok.split来对音频进行切分,切分后新建目录:change/audio/文件名/,将文件存入该目录。

复制代码
# 引入auditok库
import auditok
# 输入类别为audio
def qiefen(path, ty='audio', mmin_dur=1, mmax_dur=100000, mmax_silence=1, menergy_threshold=55):
    audio_file = path
    audio, audio_sample_rate = soundfile.read(
        audio_file, dtype="int16", always_2d=True)

    audio_regions = auditok.split(
        audio_file,
        min_dur=mmin_dur,  # minimum duration of a valid audio event in seconds
        max_dur=mmax_dur,  # maximum duration of an event
        # maximum duration of tolerated continuous silence within an event
        max_silence=mmax_silence,
        energy_threshold=menergy_threshold  # threshold of detection
    )

    for i, r in enumerate(audio_regions):
        # Regions returned by `split` have 'start' and 'end' metadata fields
        print(
            "Region {i}: {r.meta.start:.3f}s -- {r.meta.end:.3f}s".format(i=i, r=r))

        epath = ''
        file_pre = str(epath.join(audio_file.split('.')[0].split('/')[-1]))

        mk = 'change'
        if (os.path.exists(mk) == False):
            os.mkdir(mk)
        if (os.path.exists(mk + '/' + ty) == False):
            os.mkdir(mk + '/' + ty)
        if (os.path.exists(mk + '/' + ty + '/' + file_pre) == False):
            os.mkdir(mk + '/' + ty + '/' + file_pre)
        num = i
        # 为了取前三位数字排序
        s = '000000' + str(num)

        file_save = mk + '/' + ty + '/' + file_pre + '/' + \
                    s[-3:] + '-' + '{meta.start:.3f}-{meta.end:.3f}' + '.wav'
        filename = r.save(file_save)
        print("region saved as: {}".format(filename))
    return mk + '/' + ty + '/' + file_pre

qiefen("1.wav")

执行后qiefen("1.wav")后,可以把1.wav进行切分。

语音转文本:

遍历每一个文件,将它们分别送入ASRExecutor进行识别,所有识别文本集中保存到列表words里,最终写入result.csv文件。

复制代码
# 语音转文本
asr_executor = ASRExecutor()

def audio2txt(path):
    # 返回path下所有文件构成的一个list列表
    print(f"path: {path}")
    filelist = os.listdir(path)
    # 保证读取按照文件的顺序
    filelist.sort(key=lambda x: int(os.path.splitext(x)[0][:3]))
    # 遍历输出每一个文件的名字和类型
    words = []
    for file in filelist:
        print(path + '/' + file)
        text = asr_executor(
            audio_file=path + '/' + file,
            device=paddle.get_device(), force_yes=True) # force_yes参数需要注意
        words.append(text)
    return words
# 保存
import csv

def txt2csv(txt_all):
    with open('result.csv', 'w', encoding='utf-8') as f:
        f_csv = csv.writer(f)
        for row in txt_all:
            f_csv.writerow([row])
# 可替换成自身的录音文件
source_path = '录音.wav'
# 划分音频
path = qiefen(path=source_path, ty='audio',
                mmin_dur=0.5, mmax_dur=100000, mmax_silence=0.5, menergy_threshold=55)
# 音频转文本  需要GPU
txt_all = audio2txt(path)
# 存入csv
txt2csv(txt_all)
标点符号修正:

将result.csv文件读入,拼成完整的段落,利用TextExecutor进行标点符号修正,最终将修正结果存入final_result.txt文件。

# 拿到新生成的音频的路径
texts = ''
source_path = 'result.csv'
with open(source_path, 'r') as f:
    text = f.readlines()
for i in range(len(text)):
    text[i] = text[i].replace('\n', '')
    texts = texts + text[i]
print(texts)
text_executor = TextExecutor()
if text:
    result = text_executor(
        text=texts,
        task='punc',
        model='ernie_linear_p3_wudao',
        device=paddle.get_device(),
        # force_yes=True
    )
print(result)
with open("final_result.txt", 'w') as f:
    f.writelines(result)
相关推荐
格林威1 小时前
AOI在产品质量检测制造领域的应用
人工智能·数码相机·计算机网络·计算机视觉·目标跟踪·视觉检测·制造
短视频矩阵源码定制1 小时前
矩阵系统源码推荐:技术架构与功能完备性深度解析
java·人工智能·矩阵·架构
小鱼儿电子1 小时前
44-基于ZigBee和语音识别的智能家居控制系统设计与实现
智能家居·语音识别·zigbee·语音控制
彩云回1 小时前
多维尺度分析法(MDS)
人工智能·机器学习·1024程序员节
Rock_yzh2 小时前
AI学习日记——Transformer的架构:编码器与解码器
人工智能·深度学习·神经网络·学习·transformer
rengang662 小时前
Spring AI Alibaba 框架使用示例总体介绍
java·人工智能·spring·spring ai·ai应用编程
2401_841495642 小时前
Windows 系统中ffmpeg安装问题的彻底解决
windows·python·ffmpeg·bug·语音识别·下载·安装步骤
FreeBuf_2 小时前
新型Agent感知伪装技术利用OpenAI ChatGPT Atlas浏览器传播虚假内容
人工智能·chatgpt
yuluo_YX2 小时前
语义模型 - 从 Transformer 到 Qwen
人工智能·深度学习·transformer
TMT星球3 小时前
金山办公披露三季报:营收利润双增,WPS 365成业务增长新引擎
人工智能·wps