ESP32 S3 语音识别 语音唤醒程序流程

ESP32 S3 语音识别 语音唤醒程序流程

参考例程

D:\Espressif\esp-adf\examples\speech_recognition\wwe\

首先进行esp_periph_set_init 初始化

之后注册回调函数periph_callback,在这里当有按键消息的时候执行audio_recorder_trigger_start和audio_recorder_trigger_stop,也就是开始识别和结束识别。

之后执行audio_board_key_init,初始化ADC按键,这个在之前的流程里面讲过,不在多说。

之后执行audio_board_init,初始化音频部分,包括codec和PA,这个要根据板卡进行初始化。

之后执行setup_player,

对播放器进行初始化。播放tone提示音

这里主要是初始化esp_audio_create,把如下element:tone stream、MP3decoder、i2s stream,加到player中。

之后执行start_recorder,

对识别器进行初始化,并启动。

这里新建一个pipline,把i2s stream(读取音频codec的原始数据)、filter、raw stream 这几个element加入并link进pipeline。之后audio_pipeline_run启动pipeline。这样就准备好了音频数据流。

在函数中有初始化了recorder_sr_cfg,这里识别的语音、唤醒使能、mic前端afe等都进行了定义。

之后filter_cfg里面对采样率、buffer等进行了定义。

amrnb_cfg对AMRNB_ENCODER 等参数进行了定义。

之后rsp_filter_init(&filter_cfg),amrnb_encoder_init(&amrnb_cfg)初始化,之后把返回的element句柄注册到recorder_encoder_cfg的resample和encoder中去。

之后初始化audio_rec_cfg_t cfg = AUDIO_RECORDER_DEFAULT_CFG();这里定义了audio recorder 的task优先级、堆栈、唤醒timer等参数。

之后调用cfg.sr_handle = recorder_sr_create(&recorder_sr_cfg, &cfg.sr_iface);,进行recorder sr的创建,这里cfg通过sr_handle,把之前的recorder_sr_cfg(filter_cfg、amrnb_cfg)都联系了起来。

之后在

recorder = audio_recorder_create(&cfg);这样recorder识别器初始化完成。

主程序执行rec_q = xQueueCreate(3, sizeof(int)); 创建Queue

之后主程序 audio_thread_create(NULL, "read_task", voice_read_task, NULL, 4 * 1024, 5, true, 0);

创建thread voice_read_task

识别的主处理voice_read_task

就比较好读懂了:

c 复制代码
static void voice_read_task(void *args)
{
    const int buf_len = 2 * 1024;
    uint8_t *voiceData = audio_calloc(1, buf_len);
    int msg = 0;
    TickType_t delay = portMAX_DELAY;

    while (true) {
        if (xQueueReceive(rec_q, &msg, delay) == pdTRUE) {
            switch (msg) {
                case REC_START: {
                    ESP_LOGW(TAG, "voice read begin");
                    delay = 0;
                    voice_reading = true;
                    break;
                }
                case REC_STOP: {
                    ESP_LOGW(TAG, "voice read stopped");
                    delay = portMAX_DELAY;
                    voice_reading = false;
                    break;
                }
                case REC_CANCEL: {
                    ESP_LOGW(TAG, "voice read cancel");
                    delay = portMAX_DELAY;
                    voice_reading = false;
                    break;
                }
                default:
                    break;
            }
        }
        int ret = 0;
        if (voice_reading) {
            ret = audio_recorder_data_read(recorder, voiceData, buf_len, portMAX_DELAY);
            if (ret <= 0) {
                ESP_LOGW(TAG, "audio recorder read finished %d", ret);
                delay = portMAX_DELAY;
                voice_reading = false;
            }
        }
#if VOICE2FILE == (true)
        voice_2_file(voiceData, ret);
#endif /* VOICE2FILE == (true) */
    }

程序流程梳理完毕。有啥技术问题v吾:robot3g,也可以进Q群 174742054讨论。

相关推荐
KKKlucifer18 分钟前
2025 国产化数据分类分级工具实测:国产化适配、多模态识别与动态分级能力深度解析
人工智能·分类·数据挖掘
虹科网络安全27 分钟前
从AI模型到云生态:构建系统化的企业AI安全管理体系【系列文章(3)】
人工智能·安全
互联网江湖32 分钟前
这个Q3,百度开始AI
人工智能·百度
Leinwin35 分钟前
微软与Anthropic深化战略合作,在Azure Foundry平台部署Claude系列AI模型
人工智能·microsoft·azure
Q***f63541 分钟前
机器学习书籍
人工智能·机器学习
小毅&Nora1 小时前
【AI微服务】【Spring AI Alibaba】 ① 技术内核全解析:架构、组件与无缝扩展新模型能力
人工智能·微服务·架构
D***t1311 小时前
DeepSeek模型在自然语言处理中的创新应用
人工智能·自然语言处理
WWZZ20251 小时前
快速上手大模型:深度学习10(卷积神经网络2、模型训练实践、批量归一化)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
2501_941404312 小时前
绿色科技与可持续发展:科技如何推动环境保护与资源管理
大数据·人工智能
希露菲叶特格雷拉特2 小时前
PyTorch深度学习进阶(四)(数据增广)
人工智能·pytorch·深度学习