每天5分钟搞懂大模型的分词器tokenizer(二):BPE (Byte-Pair Encoding)

BPE (Byte-Pair Encoding)

字节对编码 (BPE) 最初是作为一种压缩文本的算法开发的,最早是由Philip Gage于1994年在《A New Algorithm for Data Compression》一文中提出,后来被 OpenAI 在预训练 GPT 模型时用于分词器(Tokenizer)。它被许多 Transformer 模型使用,包括 GPT、GPT-2、RoBERTa、BART 和 DeBERTa。

本文尝试用最直观的语言和示例来解释 BPE 算法。

本文的分词是在英文(拉丁语系)状态下进行的,中文状态下的分词会在后续的文章中讨论。

1. 直觉式理解

假设我们有一份语料,其中包含以下单词:

plaintext 复制代码
faster</ w>: 8, higher</ w>:6, stronger</ w>:7

其中,数字表示单词出现的次数。

注: </ w> 表示单词的结束,使用 "w" 是因为它是 "word" 的首字母,这是一种常见的命名约定。然而,具体的标记token可能会根据不同的实现或者不同的分词方法有所不同。

首先,我们将其中的每个字符作为一个 token,得到的 token 如下:

plaintext 复制代码
f a s t e r</ w>: 8, h i g h e r</ w>: 6, s t r o n g e r</ w>: 7

对应的字典如下:

plaintext 复制代码
'a', 'e', 'f', 'g', 'h', 'i', 'n', 'o', 'r', 's', 't', 'r</ w>'

第二步,我们统计每两个token相邻出现的次数,得到如下结果:

plaintext 复制代码
'fa':8,'as':8,'st':15,'te':8,'er</ w>':21,'hi':6,'ig':6,'gh':6,'he':6,'tr':7,'ro':7,'on':7,'ng':7,'ge':7

8+8+15+8+21+6+6+6+6+7+7+7+7+7=115

我们将出现次数最多的字符'e'和'r</ w>'对合并'er</ w>'【这就是byte pair 字节对的名称由来】,token变为:

plaintext 复制代码
f a s t er</ w>: 8, h i g h er</ w>: 6, s t r o n g er</ w>: 7

对应的字典变化为:

plaintext 复制代码
'a', 'f', 'g', 'h', 'i', 'n', 'o', 's','r', 't', 'er</ w>'

注意: 此时的'e'和'r</ w>'被'er'消融了,因为在token中除了'er'中有'e'和'r</ w>'其他地方都没有。

第三步,现在'er</ w>'已经是一个token了,我们继续统计相邻token出现的次数,得到如下结果:

plaintext 复制代码
'fa':8,'as':8,'st':15,'ter</ w>':8,'hi':6,'ig':6,'gh':6,'her</ w>':6,'tr':7,'ro':7,'on':7,'ng':7,'ger</ w>':7

我们将出现次数最多的字符't'和'er</ w>'对合并'ter</ w>',token变为:

plaintext 复制代码
f a s ter</ w>: 8, h i g h er</ w>: 6, s t r o n g er</ w>: 7

对应的字典变化为:

plaintext 复制代码
'a', 'f', 'g', 'h', 'i', 'n', 'o', 's','r', 't', 'er</ w>', 'ter</ w>'

注意: 此时的'er</ w>'和't'都没有被'ter</ w>'消融了,因为在token中除了'ter</ w>'中有'er</ w>',其他地方也有'er</ w>'和't'

重复上述步骤,直到达到预设的token数量或者达到预设的迭代次数;

这两个就是BPE算法的超参数,可以根据实际情况调整。

搞清楚了BPE,后续我们再来看wordpiece和sentencepiece。

参考

[1] A New Algorithm for Data Compression

[2] wiki:BPE

[3] Byte-Pair Encoding tokenization

欢迎关注我的GitHub和微信公众号,来不及解释了,快上船!

GitHub: LLMForEverybody

仓库上有原始的Markdown文件,完全开源,欢迎大家Star和Fork!

相关推荐
YSGZJJ28 分钟前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞30 分钟前
COR 损失函数
人工智能·机器学习
盼海34 分钟前
排序算法(五)--归并排序
数据结构·算法·排序算法
HPC_fac130520678161 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
网易独家音乐人Mike Zhou4 小时前
【卡尔曼滤波】数据预测Prediction观测器的理论推导及应用 C语言、Python实现(Kalman Filter)
c语言·python·单片机·物联网·算法·嵌入式·iot
小陈phd4 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao5 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama
Swift社区8 小时前
LeetCode - #139 单词拆分
算法·leetcode·职场和发展
Kent_J_Truman8 小时前
greater<>() 、less<>()及运算符 < 重载在排序和堆中的使用
算法
IT 青年9 小时前
数据结构 (1)基本概念和术语
数据结构·算法