每天5分钟搞懂大模型的分词器tokenizer(二):BPE (Byte-Pair Encoding)

BPE (Byte-Pair Encoding)

字节对编码 (BPE) 最初是作为一种压缩文本的算法开发的,最早是由Philip Gage于1994年在《A New Algorithm for Data Compression》一文中提出,后来被 OpenAI 在预训练 GPT 模型时用于分词器(Tokenizer)。它被许多 Transformer 模型使用,包括 GPT、GPT-2、RoBERTa、BART 和 DeBERTa。

本文尝试用最直观的语言和示例来解释 BPE 算法。

本文的分词是在英文(拉丁语系)状态下进行的,中文状态下的分词会在后续的文章中讨论。

1. 直觉式理解

假设我们有一份语料,其中包含以下单词:

plaintext 复制代码
faster</ w>: 8, higher</ w>:6, stronger</ w>:7

其中,数字表示单词出现的次数。

注: </ w> 表示单词的结束,使用 "w" 是因为它是 "word" 的首字母,这是一种常见的命名约定。然而,具体的标记token可能会根据不同的实现或者不同的分词方法有所不同。

首先,我们将其中的每个字符作为一个 token,得到的 token 如下:

plaintext 复制代码
f a s t e r</ w>: 8, h i g h e r</ w>: 6, s t r o n g e r</ w>: 7

对应的字典如下:

plaintext 复制代码
'a', 'e', 'f', 'g', 'h', 'i', 'n', 'o', 'r', 's', 't', 'r</ w>'

第二步,我们统计每两个token相邻出现的次数,得到如下结果:

plaintext 复制代码
'fa':8,'as':8,'st':15,'te':8,'er</ w>':21,'hi':6,'ig':6,'gh':6,'he':6,'tr':7,'ro':7,'on':7,'ng':7,'ge':7

8+8+15+8+21+6+6+6+6+7+7+7+7+7=115

我们将出现次数最多的字符'e'和'r</ w>'对合并'er</ w>'【这就是byte pair 字节对的名称由来】,token变为:

plaintext 复制代码
f a s t er</ w>: 8, h i g h er</ w>: 6, s t r o n g er</ w>: 7

对应的字典变化为:

plaintext 复制代码
'a', 'f', 'g', 'h', 'i', 'n', 'o', 's','r', 't', 'er</ w>'

注意: 此时的'e'和'r</ w>'被'er'消融了,因为在token中除了'er'中有'e'和'r</ w>'其他地方都没有。

第三步,现在'er</ w>'已经是一个token了,我们继续统计相邻token出现的次数,得到如下结果:

plaintext 复制代码
'fa':8,'as':8,'st':15,'ter</ w>':8,'hi':6,'ig':6,'gh':6,'her</ w>':6,'tr':7,'ro':7,'on':7,'ng':7,'ger</ w>':7

我们将出现次数最多的字符't'和'er</ w>'对合并'ter</ w>',token变为:

plaintext 复制代码
f a s ter</ w>: 8, h i g h er</ w>: 6, s t r o n g er</ w>: 7

对应的字典变化为:

plaintext 复制代码
'a', 'f', 'g', 'h', 'i', 'n', 'o', 's','r', 't', 'er</ w>', 'ter</ w>'

注意: 此时的'er</ w>'和't'都没有被'ter</ w>'消融了,因为在token中除了'ter</ w>'中有'er</ w>',其他地方也有'er</ w>'和't'

重复上述步骤,直到达到预设的token数量或者达到预设的迭代次数;

这两个就是BPE算法的超参数,可以根据实际情况调整。

搞清楚了BPE,后续我们再来看wordpiece和sentencepiece。

参考

1\] [A New Algorithm for Data Compression](https://link.juejin.cn?target=http%3A%2F%2Fwww.pennelynn.com%2FDocuments%2FCUJ%2FHTML%2F94HTML%2F19940045.HTM "http://www.pennelynn.com/Documents/CUJ/HTML/94HTML/19940045.HTM") \[2\] [wiki:BPE](https://link.juejin.cn?target=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FByte_pair_encoding "https://en.wikipedia.org/wiki/Byte_pair_encoding") \[3\] [Byte-Pair Encoding tokenization](https://link.juejin.cn?target=https%3A%2F%2Fhuggingface.co%2Flearn%2Fnlp-course%2Fen%2Fchapter6%2F5 "https://huggingface.co/learn/nlp-course/en/chapter6/5") ## 欢迎关注我的GitHub和微信公众号,来不及解释了,快上船! [GitHub: LLMForEverybody](https://link.juejin.cn?target=https%3A%2F%2Fgithub.com%2Fluhengshiwo%2FLLMForEverybody "https://github.com/luhengshiwo/LLMForEverybody") 仓库上有原始的Markdown文件,完全开源,欢迎大家Star和Fork!

相关推荐
光锥智能3 小时前
从连接机器到激活知识:探寻工业互联网深水区的山钢范式
人工智能
GHL2842710903 小时前
分析式AI学习
人工智能·学习·ai编程
ujainu4 小时前
CANN仓库中的AIGC性能极限挑战:昇腾软件栈如何榨干每一瓦算力
人工智能·开源
野犬寒鸦4 小时前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
wenzhangli74 小时前
ooderA2UI BridgeCode 深度解析:从设计原理到 Trae Solo Skill 实践
java·开发语言·人工智能·开源
brave and determined4 小时前
CANN ops-nn算子库使用教程:实现神经网络在NPU上的加速计算
人工智能·深度学习·神经网络
brave and determined4 小时前
CANN算子开发基础框架opbase完全解析
人工智能
霖霖总总4 小时前
[小技巧66]当自增主键耗尽:MySQL 主键溢出问题深度解析与雪花算法替代方案
mysql·算法
一枕眠秋雨>o<4 小时前
调度的艺术:CANN Runtime如何编织昇腾AI的时空秩序
人工智能
rainbow68894 小时前
深入解析C++STL:map与set底层奥秘
java·数据结构·算法