【无标题】如何使用yolo-v8 实现自定义目标检测

如何使用yolo-v8 实现自定义目标检测

训练数据集准备

在kaggle平台或者其他数据集的平台搜索相应的数据集,也可以自己拍摄大量的照片整理成数据集。

整理数据集的时候要注意数据标签的各式,必须是yolo-v8对应的格式,如果下载的数据集中自带的数据标签不是yolo-v8的格式(例如pascal voc),需要我们将数据格式转化为yolo-v8的格式

搭建环境

安装anaconda

复制代码
下载anaconda,清华源下载链接:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
在下载目录下找到对应版本(linux、mac、windows)的anaconda软件进行下载,下载之后按照常规的安装步骤将软件安装到主机上。

配置python虚拟环境

打开anaconda 的"anaconda prompt"命令行窗口

创建python3.8的虚拟环境:conda create -n myenv python=3.8

激活创建的虚拟环境:conda activate myenv

退出创建的虚拟环境:conda deactivate

安装yolo-v8以及labelimg图片标注工具

打开"anaconda prompt"命令行窗口,进入虚拟环境:

conda activate myenv

切换镜像源到清华源:

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/

pip config set install trusted-host pypi.tuna.tsinghua.edu.cn

安装yolo-v8:

pip install ultralytics

安装labelimg图片标注工具:

pip install labelimg

编写配置文件和训练脚本文件

编写yaml配置文件(文件名为dataset.yaml)

yaml 复制代码
# 训练数据路径
train: E:\Mypro\*****
# 验证数据路径
val: E:\Mypro\*****
# 测试数据路径
test: E:\Mypro\*****
# 目标种类数目
nc: 10
# 目标名称
# dog
# cat
# horse
names: ['dog','cat','horse']

编写模型训练代码(文件名称为yolotrain.py

python 复制代码
from ultralytics import YOLO  # 导入yolo模块
model = YOLO('yolov8n.pt')  # 用于加载yolo-v8的通用预训练模型
model.train(data='dataset.yaml',epochs=100)		# 加载上步编写的yaml配置文件,获取其中配置参数内容
model.val()		# 使用验证集验证效果

运行训练数据集获得模型

运行yolotrain.py开始训练模型,大概需要稍长时间具体由数据集大小而定,训练完成后会在当前目录下产生一个runs/detect/train目录,目录中weights目录中保存了训练好的模型文件best.pt和last.pt,一般使用best.pt进行目标识别应用。

测试训练好的数据模型

编写测试代码(文件名称yolotest.py

python 复制代码
from ultralytics import YOLO # 导入yolo模块
model = YOLO('best.pt')		# 加载训练好的模型
# 识别图片或者视频中的目标
model = predict('001.jpg',save=True)
model = predict('002.mp4', save=True)
# 只识别自己指定的0,1类别的目标,line_width表示识别框字体大小
model = predict('003.jpg',save=True,classes = [0,1],line_width = 30)
model = predict('004.mp4',save=True,classes = [0,1],line_width = 30)

运行测试程序获取结果

运行yolotest.py,识别结果保存在在当面目录下的runs/detect/predict中,打开图片或者视频文件就可以看到圈出来目标的图片或者视频文件。

相关推荐
鼾声鼾语6 分钟前
matlab的ros2发布的消息,局域网内其他设备收不到情况吗?但是matlab可以订阅其他局域网的ros2发布的消息(问题总结)
开发语言·人工智能·深度学习·算法·matlab·isaaclab
Dingdangcat8616 分钟前
中药材图像识别与分类 RetinaNet-R101-FPN模型详解
人工智能·数据挖掘
老蒋新思维18 分钟前
创客匠人视角:智能体重构创始人 IP,知识变现从 “内容售卖” 到 “能力复制” 的革命
大数据·网络·人工智能·tcp/ip·创始人ip·创客匠人·知识变现
Honmaple1 小时前
Spring AI 2.x 发布:全面拥抱 Java 21,Redis 史诗级增强
java·人工智能·spring
古城小栈1 小时前
区块链 + AI:医疗诊断模型存证上链技术实践与探索
人工智能·区块链
丹宇码农1 小时前
Index-TTS2 从零到一:完整安装与核心使用教程
人工智能·ai·tts
AKAMAI1 小时前
Akamai Cloud客户案例 | IPPRA的简洁、经济、易用的云计算服务
人工智能·云计算
Exploring2 小时前
从零搭建使用 Open-AutoGML 搜索附近的美食
android·人工智能
阿里云大数据AI技术2 小时前
在 DataWorks 中一键部署大模型,即刻用于数据集成和数据开发
人工智能