CogVLM 与 CogAgent:清华与智谱 AI 联合推出专注于 GUI 的多模态视觉大模型

❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. CogVLM 和 CogAgent 是由清华大学与智谱 AI 联合推出的多模态视觉大模型,专注于图形用户界面(GUI)的理解和导航。
  2. CogAgent 在多个图像理解基准测试中取得了领先成绩,在 GUI 操作数据集上显著超越了现有的模型。
  3. 模型支持高达 1120×1120 像素的高分辨率图像输入,具备视觉问答、视觉定位和 GUI Agent 等多种能力。

正文(附运行示例)

CogVLM 是什么

CogVLM 是一个强大的开源视觉语言模型(VLM),专注于图形用户界面(GUI)的理解和导航。CogVLM-17B 拥有 100 亿的视觉参数和 70 亿的语言参数,支持 490*490 分辨率的图像理解和多轮对话。

CogAgent 是什么

CogAgent 是基于 CogVLM 改进的开源视觉语言模型,专注于 GUI 图像 Agent 的能力。CogAgent-18B 拥有 110 亿的视觉参数和 70 亿的语言参数,支持 1120*1120 分辨率的图像理解。

CogAgent 的主要功能

CogAgent 是 CogVLM 的改进版本,专注于 GUI 图像 Agent 的能力,具有以下主要功能:

  1. 高分辨率图像理解:支持 1120*1120 分辨率的图像输入,能够处理复杂的 GUI 界面。
  2. 视觉问答:能够针对 GUI 截图进行问答,解释网页、PPT、手机软件的功能,解说游戏界面等。
  3. 视觉定位:能够识别和解释小型 GUI 元素和文本,对于有效的 GUI 交互至关重要。
  4. GUI Agent 能力:能够在任何图形用户界面截图上,为任何给定任务返回一个计划,下一步行动,以及带有坐标的特定操作。
  5. 自动化 GUI 操作:能够模拟用户操作,如点击按钮、输入文本和选择菜单,提供自动化 GUI 操作的能力。
  6. 多模态能力:结合了视觉和语言模态,能在不依赖 API 调用的条件下,实现跨应用、跨网页的功能调用来执行任务。

如何运行 CogVLM 和 CogAgent

首先,我们需要安装依赖项。

bash 复制代码
# CUDA >= 11.8
pip install -r requirements.txt
python -m spacy download en_core_web_sm

所有的推理代码都位于 basic_demo/ 目录下。请在进行进一步操作之前,先切换到这个目录。

CLI (SAT version)

通过以下方式运行 CLI 演示:

bash 复制代码
# CogAgent
python cli_demo_sat.py --from_pretrained cogagent-chat --version chat --bf16  --stream_chat
python cli_demo_sat.py --from_pretrained cogagent-vqa --version chat_old --bf16  --stream_chat

# CogVLM
python cli_demo_sat.py --from_pretrained cogvlm-chat --version chat_old --bf16  --stream_chat
python cli_demo_sat.py --from_pretrained cogvlm-grounding-generalist --version base --bf16  --stream_chat

该程序将自动下载卫星模型并在命令行中进行交互。您可以通过输入指令并按回车来生成回复。输入clear 以清除对话历史,输入stop 以停止程序。

CLI (Huggingface version)

通过以下方式运行 CLI 演示:

bash 复制代码
# CogAgent
python cli_demo_hf.py --from_pretrained THUDM/cogagent-chat-hf --bf16
python cli_demo_hf.py --from_pretrained THUDM/cogagent-vqa-hf --bf16

# CogVLM
python cli_demo_hf.py --from_pretrained THUDM/cogvlm-chat-hf --bf16
python cli_demo_hf.py --from_pretrained THUDM/cogvlm-grounding-generalist --bf16

资源


❤️ 如果你也关注大模型与 AI 的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的 AI 应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关推荐
果冻人工智能37 分钟前
2025 年将颠覆商业的 8 大 AI 应用场景
人工智能·ai员工
代码不行的搬运工38 分钟前
神经网络12-Time-Series Transformer (TST)模型
人工智能·神经网络·transformer
石小石Orz40 分钟前
Three.js + AI:AI 算法生成 3D 萤火虫飞舞效果~
javascript·人工智能·算法
孤独且没人爱的纸鹤1 小时前
【深度学习】:从人工神经网络的基础原理到循环神经网络的先进技术,跨越智能算法的关键发展阶段及其未来趋势,探索技术进步与应用挑战
人工智能·python·深度学习·机器学习·ai
阿_旭1 小时前
TensorFlow构建CNN卷积神经网络模型的基本步骤:数据处理、模型构建、模型训练
人工智能·深度学习·cnn·tensorflow
羊小猪~~1 小时前
tensorflow案例7--数据增强与测试集, 训练集, 验证集的构建
人工智能·python·深度学习·机器学习·cnn·tensorflow·neo4j
极客代码1 小时前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11331 小时前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike1 小时前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇1 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow