<项目代码>YOLOv8路面病害识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>路面病害数据集<目标检测>

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 results.png

3.4 F1_curve

3.5 confusion_matrix

3.6 confusion_matrix_normalized

3.7 验证 batch

标签:

预测结果:

相关推荐
deflag1 小时前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
FL16238631291 天前
[C++]使用纯opencv部署yolov12目标检测onnx模型
c++·opencv·yolo
倒霉蛋小马2 天前
【YOLOv8】损失函数
深度学习·yolo·机器学习
红色的山茶花2 天前
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-build.py
笔记·深度学习·yolo
咏&志2 天前
目标检测之YOLO论文简读
人工智能·yolo·目标检测
阿_旭3 天前
如何在C++中使用YOLO模型进行目标检测
人工智能·yolo·目标检测
向哆哆3 天前
动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度
深度学习·yolo·目标跟踪·yolov8
itom19003 天前
Luckfox Pico Max运行RKNN-Toolkit2中的Yolov5 adb USB仿真
人工智能·yolo
红色的山茶花3 天前
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-augment.py
笔记·深度学习·yolo
我是一个对称矩阵4 天前
YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别
人工智能·yolo·目标跟踪