<项目代码>YOLOv8路面病害识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>路面病害数据集<目标检测>

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 results.png

3.4 F1_curve

3.5 confusion_matrix

3.6 confusion_matrix_normalized

3.7 验证 batch

标签:

预测结果:

相关推荐
Mrs.Gril6 小时前
RKNN3588上部署 RTDETRV2
深度学习·yolo·rknn·rtdetr
FL162386312915 小时前
[yolov11改进系列]基于yolov11引入可变形注意力DAttention的python源码+训练源码
yolo
Coovally AI模型快速验证2 天前
基于YOLO-NAS-Pose的无人机象群姿态估计:群体行为分析的突破
人工智能·神经网络·算法·yolo·目标检测·无人机·cocos2d
凌康ACG2 天前
易语言使用OCR
c++·yolo·c#·ocr·易语言
FL16238631292 天前
[yolov11改进系列]基于yolov11使用图像去雾网络UnfogNet替换backbone的python源码+训练源码
开发语言·python·yolo
mozun20203 天前
YOLOv7 辅助检测头与重参数化解析2025.6.1
人工智能·yolo·目标检测·机器学习·计算机视觉·目标跟踪
FL16238631295 天前
[yolov11改进系列]基于yolov11引入上下文锚点注意力CAA的python源码+训练源码
人工智能·yolo·目标跟踪
2201_754918416 天前
YOLOv2 深度解析:目标检测领域的进阶之路
人工智能·yolo·目标检测·计算机视觉
layneyao6 天前
计算机视觉入门:OpenCV与YOLO目标检测
opencv·yolo·计算机视觉
weixin_525911876 天前
【Opencv+Yolo】Day2_图像处理
图像处理·opencv·yolo