<项目代码>YOLOv8路面病害识别<目标检测>

YOLOv8是一种单阶段(one-stage)检测算法,它将目标检测问题转化为一个回归问题,能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法(如Faster R-CNN),YOLOv8具有更高的检测速度和实时性。

1.数据集介绍

数据集详情可以参考博主写的文章<数据集>路面病害数据集<目标检测>

2.YOLOv8模型结构

YOLOv8的结构主要分为三部分:Backbone、Neck和Head。

- Backbone
  • 用于提取输入图像的特征。YOLOv8采用了多种轻量化的卷积模块(如CSP模块)和扩展卷积(Depthwise Separable Convolution),提升了特征提取的速度和效率。
  • 它能够有效地捕获不同尺度和不同特征层次的信息。
- Neck
  • 用于融合多尺度特征,实现对小目标的更好检测。YOLOv8中常用的Neck是PAN(Path Aggregation Network)和FPN(Feature Pyramid Network)的结合,能够更好地传递底层和顶层特征,提高对目标的检测精度。
- Head
  • 负责最终的目标检测和分类任务。YOLOv8的Head包括分类分支和边界框回归分支。分类分支输出每个候选区域的类别概率,边界框回归分支则输出检测框的位置和大小。
  • YOLOv8采用了Anchor-Free的设计,使得模型可以在不需要预设锚框的情况下进行检测,减少了计算复杂度,并提升了检测精度。

YOLOv8模型的整体结构如下图所示:

3.模型训练结果

YOLOv8在训练结束后,可以在**runs**目录下找到训练过程及结果文件,如下图所示:

3.1 map@50指标

3.2 P_curve.png

3.3 results.png

3.4 F1_curve

3.5 confusion_matrix

3.6 confusion_matrix_normalized

3.7 验证 batch

标签:

预测结果:

相关推荐
马甲是掉不了一点的<.<5 小时前
计算机视觉常用数据集Cityscapes的介绍、下载、转为YOLO格式进行训练
人工智能·yolo·目标检测·计算机视觉·计算机视觉数据集
joker_man117 小时前
科大讯飞AI大赛:玉米雄穗识别挑战赛
人工智能·python·yolo
利哥AI实例探险1 天前
YOLOv11在目标检测中的应用及其与PaddleDetection的对比
yolo·目标检测·目标跟踪
马甲是掉不了一点的<.<1 天前
巨详细解析!YOLO-G:用于跨域目标检测的改进YOLO(Plos One 2023)
深度学习·yolo·目标检测·跨域目标检测·无监督自训练
飞腾开发者1 天前
飞腾X100 NPU Benchmark使用说明
linux·人工智能·python·yolo·机器学习·计算机视觉
阿_旭1 天前
YOLOv5/v8/v10/v11详细介绍:网络结构,创新点
深度学习·yolo·目标检测·ai·yolo11
F80002 天前
基于YOLOv11的动物类别实时检测系统(python+pyside6界面+系统源码+可训练的数据集+也完成的训练模型)
人工智能·python·yolo·计算机视觉·目标跟踪
夜清寒风2 天前
深度学习:yolo的使用--建立模型
人工智能·深度学习·yolo
红米煮粥2 天前
Yolo系列——yolo v3
yolo
极智视界3 天前
目标检测数据集 - 新能源车车牌检测数据集下载「包含VOC、COCO、YOLO三种格式」
人工智能·yolo·目标检测·数据集·voc·coco·算法训练