中药大数据(三)中医知识图谱的创建

本项目纯原创,转载请说明。

如果大家有其他需要制作的知识图谱,或者要基于知识图谱做一些应用,也欢迎联系!

1 先看下效果

(1)总体图谱数据

(2)性味归经【部分】

(3)医学书籍收录方剂【部分】


(4)医学书籍收录药材【部分】

(5)方剂的构成药材【部分】

2 数据预处理

要做的事情是从处方字段中提取出所有的方剂

也就是根据以下的数据去提取药材

代码如下:

python 复制代码
# 读取 tb_prescriptions 和 tb_cmedicine 数据
df_prescriptions = pd.read_sql('SELECT * FROM tb_prescription', cnn)  # 方剂表
df_cmedicine = pd.read_sql('SELECT title FROM tb_cmedicine', cnn)  # 中药表

# 获取中药名列表,并按长度从大到小排序
medicine_titles = df_cmedicine['title'].tolist()
medicine_titles.sort(key=len, reverse=True)  # 按长度排序,长的药名优先匹配

# 函数:检查每个 prescription 中出现了哪些中药(最大匹配)
def find_medicines_in_prescription(prescription, medicine_titles):
    found_medicines = []
    for medicine in medicine_titles:
        if medicine in prescription:
            found_medicines.append(medicine)
            # 将匹配到的药名从 prescription 中移除,避免重复匹配较短的名称
            prescription = prescription.replace(medicine, '')
    return ','.join(found_medicines)

# 遍历 prescription 列,并检查每个方剂中包含的中药
df_prescriptions['found_medicines'] = df_prescriptions['prescription'].apply(find_medicines_in_prescription, args=(medicine_titles,))

# 打印结果:prescription 中找到的中药
for index, row in df_prescriptions.iterrows():
    print(f"Prescription: {row['prescription']}\nFound Medicines: {row['found_medicines']}\n")


# 将提取的中药信息更新到 tb_prescription 表的 fangji 字段
for index, row in df_prescriptions.iterrows():
    found_medicines = row['found_medicines']

    # 更新 tb_prescription 表的 fangji 字段
    update_query = f"""
    UPDATE tb_prescription 
    SET fangji = '{found_medicines}'
    WHERE id = {row['id']}  -- 假设 tb_prescription 表有一个 id 字段作为主键
    """

    # 执行 SQL 更新语句
    cnn.execute(update_query)

# 确保关闭连接
cnn.close()

其中有一个问题:

Prescription: 春酒5升,葶苈子2升。

Found Medicines: 酒,葶苈子,葶苈

药方里出现了苈子,但是匹配的时候葶苈子,葶苈都匹配了,出现这个问题主要是匹配的时候应该是最大匹配,就是类似要有贪心思想。

3 neo4j 知识图谱构建代码

下面贴出部分的Neo4j导入的代码

创建节点尽可能用merge语句,否则会出现大量重复节点

python 复制代码
# 连接到 Neo4j 数据库
# 读取 tb_prescription 和 tb_cmedicine 数据
df_prescriptions = pd.read_sql('SELECT * FROM tb_prescription', cnn)
df_cmedicine = pd.read_sql('SELECT * FROM tb_cmedicine', cnn)

# 将 tb_cmedicine 转换为字典,方便根据药名查找对应的药材信息
cmedicine_dict = df_cmedicine.set_index('title').T.to_dict()


# 正则表达式,用于提取《》之间的书名号内容
def extract_book_title(excerpt):
    match = re.search(r'《([^》]+)》', excerpt)
    if match:
        return f'《{match.group(1)}》'
    return None


# 创建药方和药材的知识图谱,确保节点和关系不会重复
for index, row in df_prescriptions.iterrows():
    # 创建药方节点(防止重复)
    prescription_node = Node("Prescription", name=row['title'],
                             prescription=row['prescription'],
                             making=row['making'],
                             functional_indications=row['functional_indications'],
                             usage=row['usage'],
                             excerpt=row['excerpt'],
                             care=row['care'])
    graph.merge(prescription_node, "Prescription", "name")  # 防止重复创建方剂节点

    # 分割 fangji 中的药材名称
    medicines = row['fangji'].split(',') if row['fangji'] else []

    for medicine in medicines:
        medicine = medicine.strip()  # 去除药材名称前后的空格
        # 从 tb_cmedicine 数据中获取该药材的详细信息
        if medicine in cmedicine_dict:
            med_info = cmedicine_dict[medicine]
            # 创建药材节点(防止重复)
            medicine_node = Node("Medicine", name=medicine,
                                 pinyin=med_info.get('pinyin'),
                                 alias=med_info.get('alias'),
                                 source=med_info.get('source'),
                                 english_name=med_info.get('english_name'),
                                 habitat=med_info.get('habitat'),
                                 flavor=med_info.get('flavor'),
                                 functional_indications=med_info.get('functional_indications'),
                                 usage=med_info.get('usage'),
                                 excerpt=med_info.get('excerpt'),
                                 provenance=med_info.get('provenance'),
                                 shape_properties=med_info.get('shape_properties'),
                                 attribution=med_info.get('attribution'),
                                 prototype=med_info.get('prototype'),
                                 discuss=med_info.get('discuss'),
                                 chemical_composition=med_info.get('chemical_composition'))
            graph.merge(medicine_node, "Medicine", "name")  # 防止重复创建药材节点

            # 创建 Prescription -> Medicine 关系(防止重复)
            relationship = Relationship(prescription_node, "所用药材", medicine_node)
            graph.merge(relationship, "Prescription", "name")

            # 提取古籍书名号《》中的内容并创建古籍节点(药材的摘录,防止重复)
            book_title = extract_book_title(med_info.get('excerpt', ''))
            if book_title:
                # 创建古籍节点(防止重复)
                book_node = Node("Book", name=book_title)
                graph.merge(book_node, "Book", "name")

                # 创建 Book -> Medicine 的 "收录药材" 关系(防止重复)
                recorded_relationship_medicine = Relationship(book_node, "收录药材", medicine_node)
                graph.merge(recorded_relationship_medicine, "Book", "name")
相关推荐
AI慧聚堂4 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者5 分钟前
【pytorch】循环神经网络
人工智能·pytorch
cdut_suye17 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报37 分钟前
微软的AI转型故事
人工智能·microsoft
古希腊掌管学习的神40 分钟前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技1 小时前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐1 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1361 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练
日出等日落2 小时前
从零开始使用MaxKB打造本地大语言模型智能问答系统与远程交互
人工智能·语言模型·自然语言处理
三木吧2 小时前
开发微信小程序的过程与心得
人工智能·微信小程序·小程序