R数据科学 17.3.3答案

(1) 除了使用 lm() 函数拟合一条直线,你还可以使用 loess() 函数来拟合一条平滑曲线。使用 loess() 代替 lm() 对 sim1 数据集重复模型拟合、网格生成、预测和可视化的过程,并将结果与 geom_smooth() 函数进行比较。

# 使用 loess() 拟合平滑曲线
loess_model <- loess(y ~ x, data = sim1)
# 生成网格数据
grid <- data.frame(x = seq(min(sim1$x), max(sim1$x), length.out = 100))
# 预测
grid$predicted_y <- predict(loess_model, newdata = grid)
# 可视化
library(ggplot2)
ggplot(sim1, aes(x, y)) +
  geom_point() +
  geom_line(data = grid, aes(x, predicted_y), color = "blue") +
  geom_smooth(method = "loess", se = FALSE, color = "red") # geom_smooth 对比

(2) add_predictions()函数还伴有 2 个函数:gather_predictions()和 spread_predicitons()。这 3 个函数有什么不同?

  1. add_predictions():将模型的预测值直接添加到原始数据框中,形成一个新的列,便于后续分析。

  2. gather_predictions():将预测结果转化为长格式(long format),通常适用于在 ggplot2 中进行分面(facet)或比较不同模型的情况。

  3. spread_predictions():将预测结果转化为宽格式(wide format),每个模型的预测值会形成一个新的列,这在比较多个模型的预测时非常有用。

(3) geom_ref_line() 函数的功能是什么?它来自于哪个 R 包?在显示残差的图形中显示一条参考线是非常重要和有用的,为什么这么说呢?

geom_ref_line() 用于在图形中添加参考线(例如,水平线或垂直线)。这个函数通常来自于 ggplot2 包。

在显示残差图时,添加参考线(如 y=0 的水平线)是非常重要和有用的,因为它能帮助我们直观地观察残差的分布。如果残差分布在这条参考线的上下是随机的,没有明显的模式,说明模型拟合良好;反之,如果残差呈现系统性的偏离,可能意味着模型存在问题或需要调整。

(4) 为什么需要检查残差绝对值的频率多边形图?与检查残差本身相比,这种方式有什么优缺点呢?

检查残差绝对值的频率多边形图可以帮助我们更好地理解残差的分布特性。优缺点如下:

  1. 优点

    频率多边形图可以直观显示残差绝对值的分布情况,尤其是它们的集中程度和分散程度。

    可以揭示潜在的异常值和偏差模式,帮助判断模型的拟合质量。

  2. 缺点

    仅仅查看残差绝对值可能会掩盖残差的实际值,导致对模型性能的误解。与检查残差的实际值相比,可能无法直观地发现模型的系统性错误或模式。

    总之,结合这两种方式,能够更全面地评估模型的拟合效果。

相关推荐
阿里云云原生8 分钟前
ApsaraMQ Serverless 能力再升级,事件驱动架构赋能 AI 应用
人工智能·架构·serverless
智兔唯新19 分钟前
【AIGC】AI工作流workflow实践:构建工作日报
人工智能·prompt·aigc
yogurt=b22 分钟前
【Python】爬虫程序打包成exe
开发语言·爬虫·python
在下小吉.29 分钟前
【传知代码】图像处理解决种子计数方法
图像处理·人工智能
go2coding30 分钟前
雷军回应AI克隆声音恶搞事件;小米发布澎湃OS 2 AI新特性
人工智能
张小生18031 分钟前
pycharm 中 json 库的常用操作
python·pycharm·json
测试199832 分钟前
Python自动化测试+邮件推送+企业微信推送+Jenkins
自动化测试·软件测试·python·测试工具·职场和发展·jenkins·测试用例
Gavin_91535 分钟前
【Django】继承框架中用户模型基类AbstractUser扩展系统用户表字段
数据库·python·django·sqlite·virtualenv
T0uken1 小时前
【机器学习】逻辑回归
人工智能·机器学习·逻辑回归
fanstuck1 小时前
Python自动化测试一文详解
开发语言·python·selenium·log4j