R数据科学 17.3.3答案

(1) 除了使用 lm() 函数拟合一条直线,你还可以使用 loess() 函数来拟合一条平滑曲线。使用 loess() 代替 lm() 对 sim1 数据集重复模型拟合、网格生成、预测和可视化的过程,并将结果与 geom_smooth() 函数进行比较。

复制代码
# 使用 loess() 拟合平滑曲线
loess_model <- loess(y ~ x, data = sim1)
# 生成网格数据
grid <- data.frame(x = seq(min(sim1$x), max(sim1$x), length.out = 100))
# 预测
grid$predicted_y <- predict(loess_model, newdata = grid)
# 可视化
library(ggplot2)
ggplot(sim1, aes(x, y)) +
  geom_point() +
  geom_line(data = grid, aes(x, predicted_y), color = "blue") +
  geom_smooth(method = "loess", se = FALSE, color = "red") # geom_smooth 对比

(2) add_predictions()函数还伴有 2 个函数:gather_predictions()和 spread_predicitons()。这 3 个函数有什么不同?

  1. add_predictions():将模型的预测值直接添加到原始数据框中,形成一个新的列,便于后续分析。

  2. gather_predictions():将预测结果转化为长格式(long format),通常适用于在 ggplot2 中进行分面(facet)或比较不同模型的情况。

  3. spread_predictions():将预测结果转化为宽格式(wide format),每个模型的预测值会形成一个新的列,这在比较多个模型的预测时非常有用。

(3) geom_ref_line() 函数的功能是什么?它来自于哪个 R 包?在显示残差的图形中显示一条参考线是非常重要和有用的,为什么这么说呢?

geom_ref_line() 用于在图形中添加参考线(例如,水平线或垂直线)。这个函数通常来自于 ggplot2 包。

在显示残差图时,添加参考线(如 y=0 的水平线)是非常重要和有用的,因为它能帮助我们直观地观察残差的分布。如果残差分布在这条参考线的上下是随机的,没有明显的模式,说明模型拟合良好;反之,如果残差呈现系统性的偏离,可能意味着模型存在问题或需要调整。

(4) 为什么需要检查残差绝对值的频率多边形图?与检查残差本身相比,这种方式有什么优缺点呢?

检查残差绝对值的频率多边形图可以帮助我们更好地理解残差的分布特性。优缺点如下:

  1. 优点

    频率多边形图可以直观显示残差绝对值的分布情况,尤其是它们的集中程度和分散程度。

    可以揭示潜在的异常值和偏差模式,帮助判断模型的拟合质量。

  2. 缺点

    仅仅查看残差绝对值可能会掩盖残差的实际值,导致对模型性能的误解。与检查残差的实际值相比,可能无法直观地发现模型的系统性错误或模式。

    总之,结合这两种方式,能够更全面地评估模型的拟合效果。

相关推荐
Java后端的Ai之路3 小时前
【Python 教程15】-Python和Web
python
那个村的李富贵3 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
冬奇Lab4 小时前
一天一个开源项目(第15篇):MapToPoster - 用代码将城市地图转换为精美的海报设计
python·开源
腾讯云开发者4 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR4 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky5 小时前
大模型生成PPT的技术原理
人工智能
禁默6 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切6 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
AI绘画哇哒哒6 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行
数据分析能量站6 小时前
Clawdbot(现名Moltbot)-现状分析
人工智能