R数据科学 17.3.3答案

(1) 除了使用 lm() 函数拟合一条直线,你还可以使用 loess() 函数来拟合一条平滑曲线。使用 loess() 代替 lm() 对 sim1 数据集重复模型拟合、网格生成、预测和可视化的过程,并将结果与 geom_smooth() 函数进行比较。

# 使用 loess() 拟合平滑曲线
loess_model <- loess(y ~ x, data = sim1)
# 生成网格数据
grid <- data.frame(x = seq(min(sim1$x), max(sim1$x), length.out = 100))
# 预测
grid$predicted_y <- predict(loess_model, newdata = grid)
# 可视化
library(ggplot2)
ggplot(sim1, aes(x, y)) +
  geom_point() +
  geom_line(data = grid, aes(x, predicted_y), color = "blue") +
  geom_smooth(method = "loess", se = FALSE, color = "red") # geom_smooth 对比

(2) add_predictions()函数还伴有 2 个函数:gather_predictions()和 spread_predicitons()。这 3 个函数有什么不同?

  1. add_predictions():将模型的预测值直接添加到原始数据框中,形成一个新的列,便于后续分析。

  2. gather_predictions():将预测结果转化为长格式(long format),通常适用于在 ggplot2 中进行分面(facet)或比较不同模型的情况。

  3. spread_predictions():将预测结果转化为宽格式(wide format),每个模型的预测值会形成一个新的列,这在比较多个模型的预测时非常有用。

(3) geom_ref_line() 函数的功能是什么?它来自于哪个 R 包?在显示残差的图形中显示一条参考线是非常重要和有用的,为什么这么说呢?

geom_ref_line() 用于在图形中添加参考线(例如,水平线或垂直线)。这个函数通常来自于 ggplot2 包。

在显示残差图时,添加参考线(如 y=0 的水平线)是非常重要和有用的,因为它能帮助我们直观地观察残差的分布。如果残差分布在这条参考线的上下是随机的,没有明显的模式,说明模型拟合良好;反之,如果残差呈现系统性的偏离,可能意味着模型存在问题或需要调整。

(4) 为什么需要检查残差绝对值的频率多边形图?与检查残差本身相比,这种方式有什么优缺点呢?

检查残差绝对值的频率多边形图可以帮助我们更好地理解残差的分布特性。优缺点如下:

  1. 优点

    频率多边形图可以直观显示残差绝对值的分布情况,尤其是它们的集中程度和分散程度。

    可以揭示潜在的异常值和偏差模式,帮助判断模型的拟合质量。

  2. 缺点

    仅仅查看残差绝对值可能会掩盖残差的实际值,导致对模型性能的误解。与检查残差的实际值相比,可能无法直观地发现模型的系统性错误或模式。

    总之,结合这两种方式,能够更全面地评估模型的拟合效果。

相关推荐
watersink2 分钟前
Dify框架下的基于RAG流程的政务检索平台
人工智能·深度学习·机器学习
脑极体5 分钟前
在MWC2025,读懂华为如何以行践言
大数据·人工智能·华为
DeepBI8 分钟前
AI+大数据:DeepBI重构竞品分析新思路
人工智能
KoiC9 分钟前
内网环境部署Deepseek+Dify,构建企业私有化AI应用
linux·人工智能·ubuntu·docker·大模型·ai应用·deepseek
试着生存12 分钟前
java根据List<Object>中的某个属性排序(数据极少,顺序固定)
java·python·list
热心市民小汪18 分钟前
管理conda下python虚拟环境
开发语言·python·conda
不去幼儿园20 分钟前
【启发式算法】Dijkstra算法详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法·图搜索算法
McQueen_LT26 分钟前
聊天室Python脚本——ChatGPT,好用
开发语言·python·chatgpt
云卓SKYDROID31 分钟前
无人机投屏技术解码过程详解!
人工智能·5g·音视频·无人机·科普·高科技·云卓科技
zy_destiny37 分钟前
【YOLOv12改进trick】三重注意力TripletAttention引入YOLOv12中,实现遮挡目标检测涨点,含创新点Python代码,方便发论文
网络·人工智能·python·深度学习·yolo·计算机视觉·三重注意力