pytorch dataloader学习

复制代码
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np 

torch.manual_seed(1)
# 自定义数据集
class CustomDataset(Dataset):
    def __init__(self):
        # 创建一些示例数据(100个样本,每个样本包含10个特征)
        self.data = torch.randn(100, 10)
        self.labels =torch.from_numpy(np.arange(100))  # 二分类标签

    def __len__(self):
        # 返回数据集的大小
        return len(self.data)

    def __getitem__(self, idx):
        # 根据索引 idx 返回对应的样本和标签
        sample = self.data[idx]
        label = self.labels[idx]
        return sample, label

# 创建数据集的实例
dataset = CustomDataset()

# 使用DataLoader加载数据
# 设置batch_size=16,shuffle=True表示打乱数据顺序
dataloader = DataLoader(dataset, batch_size=100, shuffle=True)

# 迭代DataLoader
for i in range(2):
    for batch_idx, (inputs, labels) in enumerate(dataloader):
        print(f"Batch {batch_idx+1}")
        print(f"Inputs: {inputs.size()}")  # 显示当前batch中输入数据的维度
        print(f"Labels: {labels.size()}")  # 显示当前batch中标签的维度
        print(labels)
        # 在这里你可以对数据进行训练
        # 例如:outputs = model(inputs)

只要是shuffle=True,每次epoch结果的顺序是不一样的,如果想每一次的结果是一样的

如果shuffle=False

复制代码
import torch
from torch.utils.data import Dataset, DataLoader
import numpy as np 

torch.manual_seed(1)
# 自定义数据集
class CustomDataset(Dataset):
    def __init__(self):
        # 创建一些示例数据(100个样本,每个样本包含10个特征)
        self.data = torch.randn(100, 10)
        self.labels =torch.from_numpy(np.arange(100))  # 二分类标签

    def __len__(self):
        # 返回数据集的大小
        return len(self.data)

    def __getitem__(self, idx):
        # 根据索引 idx 返回对应的样本和标签
        sample = self.data[idx]
        label = self.labels[idx]
        return sample, label

# 创建数据集的实例
dataset = CustomDataset()

# 使用DataLoader加载数据
# 设置batch_size=16,shuffle=True表示打乱数据顺序
dataloader = DataLoader(dataset, batch_size=100, shuffle=True)

# 迭代DataLoader
for i in range(2):
    for batch_idx, (inputs, labels) in enumerate(dataloader):
        print(f"Batch {batch_idx+1}")
        print(f"Inputs: {inputs.size()}")  # 显示当前batch中输入数据的维度
        print(f"Labels: {labels.size()}")  # 显示当前batch中标签的维度
        print(labels)
        # 在这里你可以对数据进行训练
        # 例如:outputs = model(inputs)

结果如下

相关推荐
FairyGirlhub15 分钟前
神经网络的初始化:权重与偏置的数学策略
人工智能·深度学习·神经网络
大写-凌祁4 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
焦耳加热5 小时前
阿德莱德大学Nat. Commun.:盐模板策略实现废弃塑料到单原子催化剂的高值转化,推动环境与能源催化应用
人工智能·算法·机器学习·能源·材料工程
深空数字孪生5 小时前
储能调峰新实践:智慧能源平台如何保障风电消纳与电网稳定?
大数据·人工智能·物联网
wan5555cn5 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
Broken Arrows6 小时前
Linux学习——管理网络安全(二十一)
linux·学习·web安全
格林威6 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖6 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
Hello123网站6 小时前
glean-企业级AI搜索和知识发现平台
人工智能·产品运营·ai工具