说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解 ),如需数据+代码+文档+视频讲解 可以直接到文章最后关注获取。
1 . 项目背景
贝叶斯优化器 (BayesianOptimization) 是一种黑盒子优化器,用来寻找最优参数。
贝叶斯优化器是基于高斯过程的贝叶斯优化,算法的参数空间中有大量连续型参数,运行时间相对较短。
贝叶斯优化器目标函数的输入必须是具体的超参数,而不能是整个超参数空间,更不能是数据、算法等超参数以外的元素。
本项目使用基于贝叶斯优化器(Bayes_opt)优化简单循环神经网络回归算法来解决回归问题。
2 . 数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
|------------|--------------|------------|
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |
数据详情如下(部分展示):
3. 数据预处理
3.1 用P andas 工具查看数据
使用Pandas工具的head()方法查看前五行数据:
关键代码:
3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:
3. 3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。
关键代码如下:
4. 探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:
从上图可以看到,y变量主要集中在-600~600之间。
4.2 相关性分析
从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5. 特征工程
5.1 建立特征数据和标签数据
关键代码如下:
5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:
5. 3 数据样本增维
为满足循环神经网络模型的数据输入要求,需要增加1个维度。
增加维度维度后的训练集与测试集样本形状:
6.构建贝叶斯优化器优化 SimpleRNN 回归模型
主要使用基于贝叶斯优化器优化SimpleRNN回归算法,用于目标回归。
6.1 构建调优模型
|------------|---------------|----------------|
| 编号 | 模型名称 | 调优参数 |
| 1 | SimpleRNN回归模型 | units |
| 2 | SimpleRNN回归模型 | epochs |
6.2 最优参数展示
寻优的过程信息:
最优参数结果展示:
6.3 最优参数构建模型
|------------|---------------|----------------------------------------------------------------|
| 编号 | 模型名称 | 调优参数 |
| 1 | SimpleRNN回归模型 | units = int(params_best['units' ]) |
| 2 | SimpleRNN回归模型 | epochs = int(params_best['epochs' ]) |
训练过程信息:
模型的摘要信息:
模型的网络结构信息:
损失曲线图展示:
7 . 模型评估
7.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
|---------------|--------------|-------------|
| 模型名称 | 指标名称 | 指标值 |
| 测试集 |||
| SimpleRNN回归模型 | R方 | 0.9802 |
| SimpleRNN回归模型 | 均方误差 | 738.408 |
| SimpleRNN回归模型 | 可解释方差值 | 0.9873 |
| SimpleRNN回归模型 | 平均绝对误差 | 21.5314 |
从上表可以看出,R方0.9802,为模型效果较好。
关键代码如下:
7.2 真实值与预测值对比图
从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
8. 结论与展望
综上所述,本文采用了贝叶斯优化器优化简单循环神经网络SimpleRNN回归模型算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。